Process-Based Decomposition of the Decadal Climate Difference between 2002–13 and 1984–95

Xiaoming Hu Department of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China

Search for other papers by Xiaoming Hu in
Current site
Google Scholar
PubMed
Close
,
Yana Li Department of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China

Search for other papers by Yana Li in
Current site
Google Scholar
PubMed
Close
,
Song Yang Department of Atmospheric Sciences, and Institute of Earth Climate and Environment System, Sun Yat-sen University, Guangzhou, China

Search for other papers by Song Yang in
Current site
Google Scholar
PubMed
Close
,
Yi Deng School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Yi Deng in
Current site
Google Scholar
PubMed
Close
, and
Ming Cai Department of Earth, Ocean, and Atmosphere Science, Florida State University, Tallahassee, Florida

Search for other papers by Ming Cai in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines at the process level the climate difference between 2002–13 and 1984–95 in ERA-Interim. A linearized radiative transfer model is used to calculate the temperature change such that its thermal radiative cooling would balance the energy flux perturbation associated with the change of an individual process, without regard to what causes the change of the process in the first place. The global mean error of the offline radiative transfer model calculations is 0.09 K, which corresponds to the upper limit of the uncertainties from a single term in the decomposition analysis.

The process-based decomposition indicates that the direct effect of the increase of CO2 (0.15 K) is the largest contributor to the global warming between the two periods (about 0.27 K). The second and third largest contributors are the cloud feedback (0.14 K) and the combined effect of the oceanic heat storage and evaporation terms (0.11 K), respectively. The largest warming associated with the oceanic heat storage term is found in the tropical Pacific and Indian Oceans, with relatively weaker warming over the tropical Atlantic Ocean. The increase in atmospheric moisture adds another 0.1 K to the global surface warming, but the enhancement in tropical convections acts to reduce the surface warming by 0.17 K. The ice-albedo and atmospheric dynamical feedbacks are the two leading factors responsible for the Arctic polar warming amplification (PWA). The increase of atmospheric water vapor over the Arctic region also contributes substantially to the Arctic PWA pattern.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Prof. Ming Cai, mcai@fsu.edu

Abstract

This study examines at the process level the climate difference between 2002–13 and 1984–95 in ERA-Interim. A linearized radiative transfer model is used to calculate the temperature change such that its thermal radiative cooling would balance the energy flux perturbation associated with the change of an individual process, without regard to what causes the change of the process in the first place. The global mean error of the offline radiative transfer model calculations is 0.09 K, which corresponds to the upper limit of the uncertainties from a single term in the decomposition analysis.

The process-based decomposition indicates that the direct effect of the increase of CO2 (0.15 K) is the largest contributor to the global warming between the two periods (about 0.27 K). The second and third largest contributors are the cloud feedback (0.14 K) and the combined effect of the oceanic heat storage and evaporation terms (0.11 K), respectively. The largest warming associated with the oceanic heat storage term is found in the tropical Pacific and Indian Oceans, with relatively weaker warming over the tropical Atlantic Ocean. The increase in atmospheric moisture adds another 0.1 K to the global surface warming, but the enhancement in tropical convections acts to reduce the surface warming by 0.17 K. The ice-albedo and atmospheric dynamical feedbacks are the two leading factors responsible for the Arctic polar warming amplification (PWA). The increase of atmospheric water vapor over the Arctic region also contributes substantially to the Arctic PWA pattern.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Prof. Ming Cai, mcai@fsu.edu
Save
  • Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci., 9, 549554, doi:10.1038/ngeo2731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. E. Trenberth, and E. Källén, 2013: Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 17541759, doi:10.1002/grl.50382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, J. R., 2007: Some considerations of the concept of climate feedback. Quart. J. Roy. Meteor. Soc., 133, 545560, doi:10.1002/qj.62.

  • Bertler, N. A. N., 2004: El Niño suppresses Antarctic warming. Geophys. Res. Lett., 31, L15207, doi:10.1029/2004GL020749.

  • Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952, doi:10.1017/CBO9781107415324.022.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and B. Yu, 2003: Climate sensitivity and response. Climate Dyn., 20, 415429, doi:10.1007/s00382-002-0283-3.

  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, doi:10.1175/JCLI3819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and D. B. Stephenson, 2012: Higher precision estimates of regional polar warming by ensemble regression of climate model projections. Climate Dyn., 39, 28052821, doi:10.1007/s00382-012-1330-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and D. B. Stephenson, 2013: On the robustness of emergent constraints used in multimodel climate change projections of Arctic warming. J. Climate, 26, 669678, doi:10.1175/JCLI-D-12-00537.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., 2005: Dynamical amplification of polar warming. Geophys. Res. Lett., 32, L22710, doi:10.1029/2005GL024481.

  • Cai, M., 2006: Dynamical greenhouse-plus feedback and polar warming amplification. Part I: A dry radiative-transportive climate model. Climate Dyn., 26, 661675, doi:10.1007/s00382-005-0104-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., and E. Kalnay, 2005: Can reanalysis have anthropogenic climate trends without model forcing? J. Climate, 18, 18441849, doi:10.1175/JCLI3347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., and J. Lu, 2007: Dynamical greenhouse-plus feedback and polar warming amplification. Part II: Meridional and vertical asymmetries of the global warming. Climate Dyn., 29, 375391, doi:10.1007/s00382-007-0238-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., and J.-H. Lu, 2009: A new framework for isolation individual feedback processes in coupled general circulation climate models. Part II: Method demonstrations and comparisons. Climate Dyn., 32, 887900, doi:10.1007/s00382-008-0424-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., and K.-K. Tung, 2012: Robustness of dynamical feedbacks from radiative forcing: 2% solar versus 2 × CO2 experiments in an idealized GCM. J. Atmos. Sci., 69, 22562271, doi:10.1175/JAS-D-11-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of cloud-climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16 60116 615, doi:10.1029/JD095iD10p16601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and K.-K. Tung, 2014: Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 345, 897903, doi:10.1126/science.1254937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2000: Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J. Climate, 13, 16741696, doi:10.1175/1520-0442(2000)013<1674:VATIAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cowtan, K., and R. G. Way, 2014: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc., 140, 19351944, doi:10.1002/qj.2297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., M. K. Tippett, and J. Shukla, 2011: A significant component of unforced multidecadal variability in the recent acceleration of global warming. J. Climate, 24, 909926, doi:10.1175/2010JCLI3659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, Y., T.-W. Park, and M. Cai, 2012: Process-based decomposition of the global surface temperature response to El Niño in boreal winter. J. Atmos. Sci., 69, 17061712, doi:10.1175/JAS-D-12-023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, Y., T.-W. Park, and M. Cai, 2013: Radiative and dynamical forcing of the surface and atmospheric temperature anomalies associated with the northern annular mode. J. Climate, 26, 51245138, doi:10.1175/JCLI-D-12-00431.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., and T. Zhou, 2014: The formation of the recent cooling in the eastern tropical Pacific Ocean and the associated climate impacts: A competition of global warming, IPO, and AMO. J. Geophys. Res. Atmos., 119, 11 27211 287, doi:10.1002/2013JD021395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drijfhout, S. S., A. T. Blaker, S. A. Josey, A. J. G. Nurser, B. Sinha, and M. A. Balmaseda, 2014: Surface warming hiatus caused by increased heat uptake across multiple ocean basins. Geophys. Res. Lett., 41, 78687874, doi:10.1002/2014GL061456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and M. F. Wehner, 2009: Is the climate warming or cooling? Geophys. Res. Lett., 36, L08706, doi:10.1029/2009GL037810.

  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, T., C. Deser, and D. P. Schneider, 2014: Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950. Geophys. Res. Lett., 41, 24192426, doi:10.1002/2014GL059239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmosphere. J. Atmos. Sci., 49, 21392156, doi:10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025, doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., K. von Salzen, J. N. S. Cole, N. P. Gillett, and J.-P. Vernier, 2013: Surface response to stratospheric aerosol changes in a coupled atmosphere–ocean model. Geophys. Res. Lett., 40, 584588, doi:10.1002/grl.50156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, P. N., D. A. Stone, P. A. Stott, T. Nozawa, A. Y. Karpechko, G. C. Hegerl, M. F. Wehner, and P. D. Jones, 2008: Attribution of polar warming to human influence. Nat. Geosci., 1, 750754, doi:10.1038/ngeo338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., T. Mauritsen, M. Tjernström, E. Källén, and G. Svensson, 2008: Vertical structure of recent Arctic warming. Nature, 451, 5356, doi:10.1038/nature06502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guemas, V., F. J. D. Reyes, I. A. Burillo, and M. Asif, 2013: Retrospective prediction of the global warming slowdown in the past decade. Nat. Climate Change, 3, 649653, doi:10.1038/nclimate1863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., and S. Manabe, 1999: The role of water vapor feedback in unperturbed climate variability and global warming. J. Climate, 12, 23272346, doi:10.1175/1520-0442(1999)012<2327:TROWVF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, P. Kharecha, and K. V. Schuckmann, 2011: Earth’s energy imbalance and implications. Atmos. Chem. Phys., 11, 13 42113 449, doi:10.5194/acp-11-13421-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and Coauthors, 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–254.

  • Hausfather, Z., K. Cowtan, D. C. Clarke, P. Jacobs, M. Richardson, and R. Rohde, 2017: Assessing recent warming using instrumentally homogeneous sea surface temperature records. Sci. Adv., 3, e1601207, doi:10.1126/sciadv.1601207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., A. Jones, and G. S. Jones, 2014: The impact of volcanic eruptions in the period 2000–2013 on global mean temperature trends evaluated in the HadGEM2-ES climate model. Atmos. Sci. Lett., 15, 9296, doi:10.1002/asl2.471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232, doi:10.1007/s00382-003-0332-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X., S. Yang, and M. Cai, 2016: Contrasting the eastern Pacific El Niño and the central Pacific El Niño: Process-based feedback attribution. Climate Dyn., 47, 24132424, doi:10.1007/s00382-015-2971-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johannessen, O. M., and Coauthors, 2004: Arctic climate change: Observed and modelled temperature and sea ice variability. Tellus, 56A, 328341, doi:10.1111/j.1600-0870.2004.00060.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and Coauthors, 2015: Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 14691472, doi:10.1126/science.aaa5632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., F. G. Rose, S. S. Mack, W. F. Miller, Y. A. N. Chen, and D. A. Rutan, 2011: Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO, CloudSat, and MODIS-derived cloud and aerosol properties. J. Geophys. Res., 116, D19209, doi:10.1029/2011JD016050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufmann, R. K., H. Kauppi, M. L. Mann, and J. H. Stock, 2011: Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc. Natl. Acad. Sci. USA, 108, 11 79011 793, doi:10.1073/pnas.1102467108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J., J. J. Kenney, C. Folland, G. Harris, G. S. Jones, M. Palmer, D. Parker, and A. Scaife, 2009: Do global temperature trends over the last decade falsify climate predictions? Bull. Amer. Meteor. Soc., 90, 7579.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2015: Tropical Pacific influence on the recent hiatus in surface global warming. U.S. CLIVAR Variations, No. 13, International CLIVAR Project Office, Southampton, United Kingdom, 10–15.

  • Kostov, Y., J. Marshall, U. Hausmann, K. C. Armour, D. Ferreira, and M. M. Holland, 2016: Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models. Climate Dyn., 48, 15951609, doi:10.1007/s00382-016-3162-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., and J. M. Gregory, 2012: Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett., 39, L18608, doi:10.1029/2012GL052952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, J. L., and D. H. Rind, 2009: How will Earth’s surface temperature change in future decades? Geophys. Res. Lett., 36, L15708, doi:10.1029/2009GL038932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., R. M. Dole, C. Jones, I. Bladé, and D. Allured, 2010: Influence of choice of time period on global surface temperature trend estimates. Bull. Amer. Meteor. Soc., 91, 14851491, doi:10.1175/2010BAMS3030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., and M. Cai, 2009: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: Formulation. Climate Dyn., 32, 873885, doi:10.1007/s00382-008-0425-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., and M. Cai, 2010: Quantifying contributions to polar warming amplification in an idealized coupled general circulation model. Climate Dyn., 34, 669687, doi:10.1007/s00382-009-0673-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, N., A. Sen Gupta, and M. H. England, 2014: Drivers of decadal hiatus periods in the 20th and 21st centuries. Geophys. Res. Lett., 41, 59785986, doi:10.1002/2014GL060527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. Arblaster, J. Fasullo, A. Hu, and K. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1, 360364, doi:10.1038/nclimate1229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., D. H. Bromwich, W. Chapman, and J. C. Comiso, 2008: Recent variability and trends of Antarctic near-surface temperature. J. Geophys. Res., 113, D04105, doi:10.1029/2007JD009094.

    • Search Google Scholar
    • Export Citation
  • Moritz, R. E., C. M. Bitz, and E. J. Steig, 2002: Dynamics of recent climate change in the Arctic. Science, 297, 14971502, doi:10.1126/science.1076522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicolas, J. P., and D. H. Bromwich, 2014: New reconstruction of Antarctic near-surface temperatures: Multidecadal trends and reliability of global reanalyses. J. Climate, 27, 80708093, doi:10.1175/JCLI-D-13-00733.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, T., Y. Deng, and M. Cai, 2012: Feedback attribution of the El Niño–Southern Oscillation–related atmospheric and surface temperature anomalies. J. Geophys. Res., 117, D23101, doi:10.1029/2012JD018468.

    • Search Google Scholar
    • Export Citation
  • Park, T., Y. Deng, M. Cai, J. Jeong, and R. Zhou, 2013: A dissection of the surface temperature biases in the Community Earth System Model. Climate Dyn., 43, 20432059, doi:10.1007/s00382-013-2029-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., 2002: Observationally based assessment of polar amplification of global warming. Geophys. Res. Lett., 29, 36, doi:10.1029/2001GL011111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2014: Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci., 7, 185189, doi:10.1038/ngeo2098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., D. T. Shindell, and K. Tsigaridis, 2014: Reconciling warming trends. Nat. Geosci., 7, 158160, doi:10.1038/ngeo2105.

  • Schneider, E. K., B. P. Kirtman, and R. S. Lindzen, 1999: Tropospheric water vapor and climate sensitivity. J. Atmos. Sci., 56, 16491658, doi:10.1175/1520-0469(1999)056<1649:TWVACS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schurer, A. P., G. C. Hegerl, and S. P. Obrochta, 2015: Determining the likelihood of pauses and surges in global warming. Geophys. Res. Lett., 42, 59745982, doi:10.1002/2015GL064458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, doi:10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sejas, S. A., and M. Cai, 2016: Isolating the temperature feedback loop and its effects on surface temperature. J. Atmos. Sci., 73, 32873303, doi:10.1175/JAS-D-15-0287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sejas, S. A., M. Cai, A.-X. Hu, G. A. Meehl, W. Washington, and P. C. Taylor, 2014: Individual feedback contributions to the seasonality of surface warming. J. Climate, 27, 56535669, doi:10.1175/JCLI-D-13-00658.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sejas, S. A., M. Cai, G. Liu, P. C. Taylor, and K.-K. Tung, 2016: A Lagrangian view of longwave radiative flux for understanding the direct heating response to an increase of CO2. J. Geophys. Res. Atmos., 121, 61916214, doi:10.1002/2015JD024738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semenov, V. A., M. Latif, D. Dommenget, N. S. Keenlyside, A. Strehz, T. Martin, and W. Park, 2010: The impact of North Atlantic–Arctic multidecadal variability on Northern Hemisphere surface air temperature. J. Climate, 23, 56685677, doi:10.1175/2010JCLI3347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360, doi:10.1175/JCLI3799.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. C. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, doi:10.1175/2007JCLI2110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., S.-W. Yeh, J. Schmetz, and H.-J. Song, 2013: Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results. Climate Dyn., 40, 17211732, doi:10.1007/s00382-012-1484-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., K. Rosenlof, R. Portmann, J. Daniel, S. Davis, T. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, doi:10.1126/science.1182488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., J. S. Daniel, R. R. Neely, J.-P. Vernier, E. G. Dutton, and L. W. Thomason, 2011: The persistently variable “background” stratospheric aerosol layer and global climate change. Science, 333, 866870, doi:10.1126/science.1206027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, X., G. J. Zhang, and M. Cai, 2014a: Quantifying contributions of climate feedbacks to tropospheric warming in the NCAR CCSM3.0. Climate Dyn., 42, 901917, doi:10.1007/s00382-013-1805-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, X., G. J. Zhang, and M. Cai, 2014b: Characterizing the climate feedback pattern in the NCAR CCSM3-SOM using hourly data. J. Climate, 27, 29122930, doi:10.1175/JCLI-D-13-00567.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., and S. J. Ghan, 1992: An analysis of cloud liquid water feedback and global climate sensitivity in a general circulation model. J. Climate, 5, 907919, doi:10.1175/1520-0442(1992)005<0907:AAOCLW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., M. Cai, A. Hu, J. Meehl, W. Washington, and G. J. Zhang, 2013: A decomposition of feedback contributions to polar warming amplification. J. Climate, 26, 70237043, doi:10.1175/JCLI-D-12-00696.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2009: Global warming due to increasing absorbed solar radiation. Geophys. Res. Lett., 36, L07706, doi:10.1029/2009GL037527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future, 1, 1932, doi:10.1002/2013EF000165.

  • Uppala, S. M., D. Dee, S. Kobayashi, P. Berrisford, and A. Simmons, 2008: Towards a climate data-assimilation system: Status update of ERA–Interim. ECMWF Newsletter, No. 115, ECMWF, Reading, United Kingdom, 12–18.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., H. Shiogama, H. Tatebe, M. Hayashi, M. Ishii, and M. Kimoto, 2014: Contribution of natural decadal variability to global warming acceleration and hiatus. Nat. Climate Change, 4, 893897, doi:10.1038/nclimate2355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetherald, R. T., and S. Manabe, 1988: Cloud feedback processes in a general circulation model. J. Atmos. Sci., 45, 13971416, doi:10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. E. Huang, S. R. Long, and C. K. Peng, 2007: On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc. Natl. Acad. Sci. USA, 104, 14 88914 894, doi:10.1073/pnas.0701020104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. E. Huang, J. M. Wallace, B. V. Smoliak, and X. Chen, 2011: On the time-varying trend in global-mean surface temperature. Climate Dyn., 37, 759773, doi:10.1007/s00382-011-1128-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., L. Wu, and L. Yu, 2011: Oceanic origin of a recent La Niña-like trend in the tropical Pacific. Adv. Atmos. Sci., 28, 1109, doi:10.1007/s00376-010-0129-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1308 644 42
PDF Downloads 376 71 10