Northern Hemisphere Stratospheric Pathway of Different El Niño Flavors in Stratosphere-Resolving CMIP5 Models

N. Calvo Departamento Fisica de la Tierra II, Universidad Complutense de Madrid, Madrid, Spain

Search for other papers by N. Calvo in
Current site
Google Scholar
PubMed
Close
,
M. Iza Departamento Fisica de la Tierra II, Universidad Complutense de Madrid, Madrid, Spain

Search for other papers by M. Iza in
Current site
Google Scholar
PubMed
Close
,
M. M. Hurwitz NASA Goddard Space Flight Center, Greenbelt, Maryland
Goddard Earth Sciences Technology and Research, Morgan State University, Baltimore, Maryland

Search for other papers by M. M. Hurwitz in
Current site
Google Scholar
PubMed
Close
,
E. Manzini Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by E. Manzini in
Current site
Google Scholar
PubMed
Close
,
C. Peña-Ortiz Universidad Pablo de Olavide, Sevilla, Spain

Search for other papers by C. Peña-Ortiz in
Current site
Google Scholar
PubMed
Close
,
A. H. Butler Chemical Sciences Division, NOAA/ESRL, and CIRES, Boulder, Colorado

Search for other papers by A. H. Butler in
Current site
Google Scholar
PubMed
Close
,
C. Cagnazzo Instituto di Fisica dell’Atmosfera e del Clima, Consiglio Nazionale delle Ricerche, Rome, Italy

Search for other papers by C. Cagnazzo in
Current site
Google Scholar
PubMed
Close
,
S. Ineson Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by S. Ineson in
Current site
Google Scholar
PubMed
Close
, and
C. I. Garfinkel Fredy and Nadine Herrmann Institute of Earth Science, Hebrew University, Jerusalem, Israel

Search for other papers by C. I. Garfinkel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Northern Hemisphere (NH) stratospheric signals of eastern Pacific (EP) and central Pacific (CP) El Niño events are investigated in stratosphere-resolving historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), together with the role of the stratosphere in driving tropospheric El Niño teleconnections in NH climate. The large number of events in each composite addresses some of the previously reported concerns related to the short observational record. The results shown here highlight the importance of the seasonal evolution of the NH stratospheric signals for understanding the EP and CP surface impacts. CMIP5 models show a significantly warmer and weaker polar vortex during EP El Niño. No significant polar stratospheric response is found during CP El Niño. This is a result of differences in the timing of the intensification of the climatological wavenumber 1 through constructive interference, which occurs earlier in EP than CP events, related to the anomalous enhancement and earlier development of the Pacific–North American pattern in EP events. The northward extension of the Aleutian low and the stronger and eastward location of the high over eastern Canada during EP events are key in explaining the differences in upward wave propagation between the two types of El Niño. The influence of the polar stratosphere in driving tropospheric anomalies in the North Atlantic European region is clearly shown during EP El Niño events, facilitated by the occurrence of stratospheric summer warmings, the frequency of which is significantly higher in this case. In contrast, CMIP5 results do not support a stratospheric pathway for a remote influence of CP events on NH teleconnections.

Current affiliation: Science Systems and Applications, Inc., Lanham, Maryland.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: N. Calvo, nataliac@fis.ucm.es

Abstract

The Northern Hemisphere (NH) stratospheric signals of eastern Pacific (EP) and central Pacific (CP) El Niño events are investigated in stratosphere-resolving historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), together with the role of the stratosphere in driving tropospheric El Niño teleconnections in NH climate. The large number of events in each composite addresses some of the previously reported concerns related to the short observational record. The results shown here highlight the importance of the seasonal evolution of the NH stratospheric signals for understanding the EP and CP surface impacts. CMIP5 models show a significantly warmer and weaker polar vortex during EP El Niño. No significant polar stratospheric response is found during CP El Niño. This is a result of differences in the timing of the intensification of the climatological wavenumber 1 through constructive interference, which occurs earlier in EP than CP events, related to the anomalous enhancement and earlier development of the Pacific–North American pattern in EP events. The northward extension of the Aleutian low and the stronger and eastward location of the high over eastern Canada during EP events are key in explaining the differences in upward wave propagation between the two types of El Niño. The influence of the polar stratosphere in driving tropospheric anomalies in the North Atlantic European region is clearly shown during EP El Niño events, facilitated by the occurrence of stratospheric summer warmings, the frequency of which is significantly higher in this case. In contrast, CMIP5 results do not support a stratospheric pathway for a remote influence of CP events on NH teleconnections.

Current affiliation: Science Systems and Applications, Inc., Lanham, Maryland.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: N. Calvo, nataliac@fis.ucm.es
Save
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, C. J., L. J. Gray, A. J. Charlton-Perez, M. M. Joshi, and A. A. Scaife, 2009: Stratospheric communication of El Niño teleconnections to European winter. J. Climate, 22, 40834096, doi:10.1175/2009JCLI2717.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenguer, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, doi:10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, doi:10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., L. M. Polvani, and C. Deser, 2014: Separating the stratospheric and tropospheric pathways of El Niño–Southern Oscillation teleconnections. Environ. Res. Lett., 9, 024014, doi:10.1088/1748-9326/9/2/024014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cagnazzo, C., and E. Manzini, 2009: Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European region. J. Climate, 22, 12231238, doi:10.1175/2008JCLI2549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cagnazzo, C., and Coauthors, 2009: Northern winter stratospheric temperature and ozone responses to ENSO inferred from an ensemble of chemistry climate models. Atmos. Chem. Phys., 9, 89358948, doi:10.5194/acp-9-8935-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvo, N., and D. R. Marsh, 2011: The combined effects of ENSO and the 11 year solar cycle on the Northern Hemisphere polar stratosphere. J. Geophys. Res., 116, D23112, doi:10.1029/2010JD015226.

    • Search Google Scholar
    • Export Citation
  • Calvo, N., M. A. Giorgetta, R. Garcia-Herrera, and E. Manzini, 2009: Nonlinearity of the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM5 simulations. J. Geophys. Res., 114, D13109, doi:10.1029/2008JD011445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvo, N., R. R. Garcia, W. J. Randel, and D. R. Marsh, 2010: Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. J. Atmos. Sci., 67, 23312340, doi:10.1175/2010JAS3433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvo Fernández, N., R. R. García, R. García Herrera, D. Gallego Puyol, L. Gimeno Presa, E. Henández Martín, and P. Ribera Rodríguez, 2004: Analysis of the ENSO Signal in tropospheric and stratospheric temperatures observed by MSU, 1979–2000. J. Climate, 17, 39343946, doi:10.1175/1520-0442(2004)017<3934:AOTESI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I : Climatology and modeling benchmarks. J. Climate, 20, 449469, doi:10.1175/JCLI3996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton-Perez, A. J., and Coauthors, 2013: On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J. Geophys. Res., 118, 24942505, doi:10.1002/jgrd.50125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., A. H. Butler, K. Fröhlich, M. Bittner, W. A. Müller, and J. Baehr, 2015: Seasonal predictability over Europe arising from El Niño and stratospheric variability in the MPI-ESM seasonal prediction system. J. Climate, 28, 256271, doi:10.1175/JCLI-D-14-00207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., and P. J. Kushner, 2011: The role of linear interference in the annular mode response to tropical SST forcing. J. Climate, 24, 778794, doi:10.1175/2010JCLI3735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and G. Branstator, 2005: Seasonal variability of teleconnection patterns. J. Atmos. Sci., 62, 13461365, doi:10.1175/JAS3405.1.

  • Free, M., and D. J. Seidel, 2009: Observed El Niño–Southern Oscillation temperature signal in the stratosphere. J. Geophys. Res., 114, D23108, doi:10.1029/2009JD012420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., N. Calvo, R. R. Garcia, and M. A. Giorgetta, 2006: Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data. J. Geophys. Res., 111, D06101, doi:10.1029/2005JD006061.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res., 113, D18114, doi:10.1029/2008JD009920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. L. Hartmann, and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 32823299, doi:10.1175/2010JCLI3010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., M. M. Hurwitz, D. W. Waugh, and A. H. Butler, 2013: Are the teleconnections of central Pacific and eastern Pacific El Niño distinct in boreal wintertime? Climate Dyn., 41, 18351852, doi:10.1007/s00382-012-1570-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and Coauthors, 2012: Assessing and understanding the impact of stratospheric dynamics and variability on the Earth system. Bull. Amer. Meteor. Soc., 93, 845859, doi:10.1175/BAMS-D-11-00145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graf, H.-F., and D. Zanchettin, 2012: Central Pacific El Niño, the “subtropical bridge,” and Eurasian climate. J. Geophys. Res., 117, D01102, doi:10.1029/2011JD016493.

    • Search Google Scholar
    • Export Citation
  • Hegyi, B. M., and Y. Deng, 2011: A dynamical fingerprint of tropical Pacific sea surface temperatures on the decadal-scale variability of cool-season Arctic precipitation. J. Geophys. Res., 116, D20121, doi:10.1029/2011JD016001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegyi, B. M., Y. Deng, R. X. Black, and R. Zhou, 2014: Initial transient response of the winter polar stratospheric vortex to idealized equatorial Pacific sea surface temperature anomalies in the NCAR WACCM. J. Climate, 27, 26992713, doi:10.1175/JCLI-D-13-00289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurwitz, M. M., P. A. Newman, L. D. Oman, and A. M. Molod, 2011a: Response of the Antarctic stratosphere to two types of El Niño events. J. Atmos. Sci., 68, 812822, doi:10.1175/2011JAS3606.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurwitz, M. M., L. D. Oman, P. A. Newman, A. M. Molod, S. M. Frith, and J. E. Nielsen, 2011b: Events response of the Antarctic stratosphere to warm pool El Niño events in the GEOS CCM. Atmos. Chem. Phys., 11, 96599669, doi:10.5194/acp-11-9659-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurwitz, M. M., N. Calvo, C. I. Garfinkel, A. H. Butler, S. Ineson, C. Cagnazzo, E. Manzini, and C. Peña-Ortiz, 2014: Extra-tropical atmospheric response to ENSO in the CMIP5 models. Climate Dyn., 43, doi:10.1007/s00382-014-2110-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ineson, S., and A. A. Scaife, 2009: The role of the stratosphere in the European climate response to El Niño. Nat. Geosci., 2, 3236, doi:10.1038/ngeo381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iza, M., and N. Calvo, 2015: Role of stratospheric sudden warmings on the response to central Pacific El Niño. Geophys. Res. Lett., 42, 24822489, doi:10.1002/2014GL062935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 7780, doi:10.1126/science.1174062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S. T., and J.-Y. Yu, 2012: The two types of ENSO in CMIP5 models. Geophys. Res. Lett., 39, L11704, doi:10.1029/2012GL052006.

  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, doi:10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., Y.-G. Ham, J.-Y. Lee, and F.-F. Jin, 2012: Improved simulation of two types of El Niño in CMIP5 models. Environ. Res. Lett., 7, 034002, doi:10.1088/1748-9326/7/3/034002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, doi:10.1029/2005GL022860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., N. Calvo, J. Yue, X. Dou, J. M. Russell, M. G. Mlynczak, C.-Y. She, and X. Xue, 2013: Influence of El Niño–Southern Oscillation in the mesosphere. Geophys. Res. Lett., 40, 32923296, doi:10.1002/grl.50598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and N. C. Lau, 2013: Influences of ENSO on stratospheric variability, and the descent of stratospheric perturbations into the lower troposphere. J. Climate, 26, 47254748, doi:10.1175/JCLI-D-12-00581.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, H., M. P. Baldwin, L. J. Gray, and M. J. Jarvis, 2008: Decadal-scale changes in the effect of the QBO on the northern stratospheric polar vortex. J. Geophys. Res., 113, D10114, doi:10.1029/2007JD009647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manzini, E., M. A. Giorgetta, M. Esch, L. Kornblueh, and E. Roeckner, 2006: The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Climate, 19, 38633882, doi:10.1175/JCLI3826.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, P. A., E. R. Nash, and J. E. Rosenfield, 2001: What controls the temperature of the Arctic stratosphere during the spring? J. Geophys. Res., 106, 19 99920 010, doi:10.1029/2000JD000061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., L. Sun, A. H. Butler, J. H. Richter, and C. Deser, 2016: Distinguishing stratospheric sudden warmings from ENSO as key drivers of wintertime climate variability over the North Atlantic and Eurasia. J. Climate, 30, 19591969, doi:10.1175/JCLI-D-16-0277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., C. Deser, and L. Sun, 2015: Effects of stratospheric variability on El Niño teleconnections. Environ. Res. Lett., 10, 124021, doi:10.1088/1748-9326/10/12/124021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassi, F., D. Kinnison, B. A. Boville, R. R. Garcia, and R. Roble, 2004: Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J. Geophys. Res., 109, D17108, doi:10.1029/2003JD004434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978, doi:10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98102, doi:10.1038/ngeo1698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. L., and P. J. Kushner, 2012: Linear interference and the initiation of extratropical stratosphere–troposphere interactions. J. Geophys. Res., 117, D13107, doi:10.1029/2012JD017587.

    • Search Google Scholar
    • Export Citation
  • Smith, K. L., C. G. Fletcher, and P. J. Kushner, 2010: The role of linear interference in the annular mode response to extratropical surface forcing. J. Climate, 23, 60366050, doi:10.1175/2010JCLI3606.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sung, M.-K., B.-M. Kim, and S.-I. An, 2014: Altered atmospheric responses to eastern Pacific and central Pacific El Niños over the North Atlantic region due to stratospheric interference. Climate Dyn., 42, 159170, doi:10.1007/s00382-012-1661-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taguchi, M., and D. L. Hartmann, 2006: Increased occurrence of stratospheric sudden warmings during El Niño as simulated by WACCM. J. Climate, 19, 324332, doi:10.1175/JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific Rim during boreal summer. Climate Dyn., 29, 113129, doi:10.1007/s00382-007-0234-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, H., S. K. Behera, and T. Yamagata, 2009: Anomalous winter climate conditions in the Pacific Rim during recent El Niño Modoki and El Niño events. Climate Dyn., 32, 663674, doi:10.1007/s00382-008-0394-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, F., J. Li, W. Tian, J. Feng, and Y. Huo, 2012: Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos. Chem. Phys., 12, 52595273, doi:10.5194/acp-12-5259-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, doi:10.1038/nature08316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24, 708720, doi:10.1175/2010JCLI3688.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zubiaurre, I., and N. Calvo, 2012: The El Niño–Southern Oscillation (ENSO) Modoki signal in the stratosphere. J. Geophys. Res., 117, D04104, doi:10.1029/2011JD016690.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1490 651 35
PDF Downloads 401 74 15