The Fate of the Southern Weddell Sea Continental Shelf in a Warming Climate

Hartmut H. Hellmer Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

Search for other papers by Hartmut H. Hellmer in
Current site
Google Scholar
PubMed
Close
,
Frank Kauker Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

Search for other papers by Frank Kauker in
Current site
Google Scholar
PubMed
Close
,
Ralph Timmermann Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

Search for other papers by Ralph Timmermann in
Current site
Google Scholar
PubMed
Close
, and
Tore Hattermann Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

Search for other papers by Tore Hattermann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Warm water of open ocean origin on the continental shelf of the Amundsen and Bellingshausen Seas causes the highest basal melt rates reported for Antarctic ice shelves with severe consequences for the ice shelf/ice sheet dynamics. Ice shelves fringing the broad continental shelf in the Weddell and Ross Seas melt at rates orders of magnitude smaller. However, simulations using coupled ice–ocean models forced with the atmospheric output of the HadCM3 SRES-A1B scenario run (CO2 concentration in the atmosphere reaches 700 ppmv by the year 2100 and stays at that level for an additional 100 years) show that the circulation in the southern Weddell Sea changes during the twenty-first century. Derivatives of Circumpolar Deep Water are directed southward underneath the Filchner–Ronne Ice Shelf, warming the cavity and dramatically increasing basal melting. To find out whether the open ocean will always continue to power the melting, the authors extend their simulations, applying twentieth-century atmospheric forcing, both alone and together with prescribed basal mass flux at the end of (or during) the SRES-A1B scenario run. The results identify a tipping point in the southern Weddell Sea: once warm water flushes the ice shelf cavity a positive meltwater feedback enhances the shelf circulation and the onshore transport of open ocean heat. The process is irreversible with a recurrence to twentieth-century atmospheric forcing and can only be halted through prescribing a return to twentieth-century basal melt rates. This finding might have strong implications for the stability of the Antarctic ice sheet.

Ice2sea Contribution Number 167.

Additional affiliation: OASys, Hamburg, Germany.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Hartmut H. Hellmer, hartmut.hellmer@awi.de

Abstract

Warm water of open ocean origin on the continental shelf of the Amundsen and Bellingshausen Seas causes the highest basal melt rates reported for Antarctic ice shelves with severe consequences for the ice shelf/ice sheet dynamics. Ice shelves fringing the broad continental shelf in the Weddell and Ross Seas melt at rates orders of magnitude smaller. However, simulations using coupled ice–ocean models forced with the atmospheric output of the HadCM3 SRES-A1B scenario run (CO2 concentration in the atmosphere reaches 700 ppmv by the year 2100 and stays at that level for an additional 100 years) show that the circulation in the southern Weddell Sea changes during the twenty-first century. Derivatives of Circumpolar Deep Water are directed southward underneath the Filchner–Ronne Ice Shelf, warming the cavity and dramatically increasing basal melting. To find out whether the open ocean will always continue to power the melting, the authors extend their simulations, applying twentieth-century atmospheric forcing, both alone and together with prescribed basal mass flux at the end of (or during) the SRES-A1B scenario run. The results identify a tipping point in the southern Weddell Sea: once warm water flushes the ice shelf cavity a positive meltwater feedback enhances the shelf circulation and the onshore transport of open ocean heat. The process is irreversible with a recurrence to twentieth-century atmospheric forcing and can only be halted through prescribing a return to twentieth-century basal melt rates. This finding might have strong implications for the stability of the Antarctic ice sheet.

Ice2sea Contribution Number 167.

Additional affiliation: OASys, Hamburg, Germany.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Hartmut H. Hellmer, hartmut.hellmer@awi.de
Save
  • Årthun, M., K. W. Nicholls, K. Makinson, M. A. Fedak, and L. Boehme, 2012: Seasonal inflow of warm water onto the southern Weddell Sea continental shelf, Antarctica. Geophys. Res. Lett., 39, L17601, doi:10.1029/2012GL052856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Assmann, K. M., H. H. Hellmer, and S. S. Jacobs, 2005: Amundsen Sea ice production and transport. J. Geophys. Res., 110, C12013, doi:10.1029/2004JC002797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beckmann, A., H. Hellmer, and R. Timmermann, 1999: A numerical model of the Weddell Sea: Large scale circulation and water mass distribution. J. Geophys. Res., 104, 23 37523 391, doi:10.1029/1999JC900194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darelius, E., I. Fer, and K. W. Nicholls, 2016: Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water. Nat. Commun., 7, 12300, doi:10.1038/ncomms12300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Depoorter, M. A., J. L. Bamber, J. A. Griggs, J. T. M. Lenaerts, S. R. M. Ligtenberg, M. R. van den Broeke, and G. Moholdt, 2013: Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502, 8992, doi:10.1038/nature12567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Favier, L., and Coauthors, 2014: Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nat. Climate Change, 4, 117121, doi:10.1038/nclimate2094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foldvik, A., T. Gammelsrød, and T. Tørresen, 1985: Circulation and water masses on the southern Weddell Sea shelf. Oceanology of the Antarctic Continental Shelf, S. S. Jacobs, Ed., Antarctic Research Series, Vol. 43, Amer. Geophys. Union, 5–20.

    • Crossref
    • Export Citation
  • Foldvik, A., and Coauthors, 2004: Ice shelf water outflow and bottom water formation in the southern Weddell Sea. J. Geophys. Res., 109, C02015, doi:10.1029/2003JC002008.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1973: Circulation and bottom water production in the Weddell Sea. Deep-Sea Res., 20, 111140.

  • Grosfeld, K., M. Schröder, E. Fahrbach, R. Gerdes, and A. Mackensen, 2001: How iceberg calving and grounding change the circulation and hydrography in the Filchner Ice Shelf-ocean system. J. Geophys. Res., 106, 90399055, doi:10.1029/2000JC000601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haid, V., and R. Timmermann, 2013: Simulated heat flux and sea ice production at coastal polynyas in the southwestern Weddell Sea. J. Geophys. Res. Oceans, 118, 26402652, doi:10.1002/jgrc.20133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hattermann, T., L. H. Smedsrud, O. A. Nøst, J. M. Lilly, and B. K. Galton-Fenzi, 2014: Eddy-resolving simulations of the Fimbul Ice Shelf cavity circulation: Basal melting and exchange with open ocean. Ocean Modell., 82, 2844, doi:10.1016/j.ocemod.2014.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hellmer, H. H., 2004: Impact of Antarctic ice shelf melting on sea ice and deep ocean properties. Geophys. Res. Lett., 31, L10307, doi:10.1029/2004GL019506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hellmer, H. H., F. Kauker, R. Timmermann, J. Determann, and J. Rae, 2012: Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature, 485, 225228, doi:10.1038/nature11064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., A. Jenkins, C. F. Giulivi, and P. Dutrieux, 2011: Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat. Geosci., 4, 519523, doi:10.1038/ngeo1188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, T. C., and Coauthors, 2011: Climate change under aggressive mitigation: The ensembles multi-model experiment. Climate Dyn., 37, 19752003, doi:10.1007/s00382-011-1005-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khazendar, A., M. P. Schodlok, I. Fenty, S. R. M. Ligtenberg, E. Rignot, and M. R. van den Broeke, 2013: Observed thinning of Totten Glacier is linked to coastal polynya variability. Nat. Commun., 4, 2857, doi:10.1038/ncomms3857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lichey, C., and H. H. Hellmer, 2001: Modeling giant-iceberg drift under the influence of sea ice in the Weddell Sea, Antarctica. J. Glaciol., 47, 452460, doi:10.3189/172756501781832133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meijers, A. J. S., E. Shuckburgh, N. Bruneau, J.-B. Sallee, T. J. Bracegirdle, and Z. Wang, 2012: Representation of the Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios. J. Geophys. Res., 117, C12008, doi:10.1029/2012JC008412.

    • Search Google Scholar
    • Export Citation
  • Nakayama, Y., M. Schröder, and H. H. Hellmer, 2013: From circumpolar deep water to the glacial meltwater plume on the eastern Amundsen Shelf. Deep-Sea Res., 77, 5062, doi:10.1016/j.dsr.2013.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakićevović, N., and Coauthors, 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp.

  • Nicholls, K. W., 1997: Predicted reduction in basal melt rates of an Antarctic ice shelf in a warmer climate. Nature, 388, 460462, doi:10.1038/41302.

  • Nicholls, K. W., S. Østerhus, K. Makinson, and M. R. Johnson, 2001: Oceanographic conditions south of Berkner Island, beneath Filchner-Ronne Ice Shelf, Antarctica. J. Geophys. Res., 106, 11 48111 492, doi:10.1029/2000JC000350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, K. W., L. Boehme, M. Biuw, and M. A. Fedak, 2008: Wintertime ocean conditions over the southern Weddell Sea continental shelf. Geophys. Res. Lett., 35, L21605, doi:10.1029/2008GL035742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nøst, O. A., M. Biuw, V. Tverberg, C. Lydersen, T. Hattermann, Q. Zhou, L. H. Smedsrud, and K. M. Kovacs, 2011: Eddy overturning of the Antarctic Slope Front controls glacial melting in the eastern Weddell Sea. J. Geophys. Res., 116, C11014, doi:10.1029/2011JC006965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., T. Whitworth III, and W. D. Nowlin Jr., 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res., 42, 641673, doi:10.1016/0967-0637(95)00021-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., S. S. Jacobs, J. Mouginot, and B. Scheuchl, 2013: Ice shelf melting around Antarctica. Science, 341, 266270, doi:10.1126/science.1235798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, S., M. Schröder, O. Huhn, and R. Timmermann, 2016: On the warm inflow at the eastern boundary of the Weddell Gyre. Deep-Sea Res., 107, 7081, doi:10.1016/j.dsr.2015.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., K. J. Heywood, A. F. Thompson, and S. Aoki, 2014: Multidecadal warming of Antarctic waters. Science, 346, doi:10.1126/science.1256117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schröder, M., and E. Fahrbach, 1999: On the structure and the transport in the eastern Weddell Gyre. Deep-Sea Res. II, 46, 501527, doi:10.1016/S0967-0645(98)00112-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2015: Eddy mediated transport of warm Circumpolar Deep Water across the Antarctic shelf break. Geophys. Res. Lett., 42, 432440, doi:10.1002/2014GL062281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., 1954: The currents off the coast of Queen Maud Land. Norw. J. Geogr., 14, 239249, doi:10.1080/00291955308542731.

  • Timmermann, R., and H. H. Hellmer, 2013: Southern Ocean warming and increased ice shelf basal melting in the twenty-first and twenty-second centuries based on coupled ice-ocean finite-element modelling. Ocean Dyn., 63, 10111026, doi:10.1007/s10236-013-0642-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, R., A. Beckmann, and H. H. Hellmer, 2002: Simulations of ice-ocean dynamics in the Weddell Sea: 1. Model configuration and validation. J. Geophys. Res., 107, 3024, doi:10.1029/2000JC000741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, R., and Coauthors, 2010: A consistent data set of Antarctic ice sheet topography, cavity geometry, and global bathymetry. Earth Syst. Sci. Data, 2, 261273, doi:10.5194/essd-2-261-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, A. P., and Coauthors, 2014: Sensitivity of the Weddell Sea sector ice streams to sub-shelf melting and surface accumulation. Cryosphere, 8, 21192134, doi:10.5194/tc-8-2119-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Q., T. Hattermann, O. A. Nøst, M. Biuw, K. M. Kovacs, and C. Lydersen, 2014: Wind-driven spreading of fresh surface water beneath ice shelves in the eastern Weddell Sea. J. Geophys. Res. Oceans, 119, 38183833, doi:10.1002/2013JC009556.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3259 1356 64
PDF Downloads 1312 187 21