Sea Ice Loss and Arctic Cyclone Activity from 1979 to 2014

Tomoko Koyama Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Tomoko Koyama in
Current site
Google Scholar
PubMed
Close
,
Julienne Stroeve National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by Julienne Stroeve in
Current site
Google Scholar
PubMed
Close
,
John Cassano Cooperative Institute for Research in Environmental Sciences, and Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by John Cassano in
Current site
Google Scholar
PubMed
Close
, and
Alex Crawford National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by Alex Crawford in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extensive summer sea ice loss has occurred within the Beaufort, Chukchi, East Siberian, and Laptev Seas over the last decade. Associated anomalies in sensible and latent heat fluxes in autumn have increased Arctic atmospheric precipitable water and air temperatures, with the potential to impact autumn and winter cyclone activity. To examine if a connection exists between recent Arctic sea ice loss and cyclone activity, several cyclone metrics from 60° to 90°N are analyzed. Results show that following years with less September sea ice, there is a subsequent increase in moisture availability, regional baroclinicity, and changes in vertical stability that favor cyclogenesis. However, tracking of individual cyclones indicates no coherent increase in cyclone frequency or intensity associated with sea ice loss. Furthermore, no robust northward progression of extreme cyclones is observed.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tomoko Koyama, tomoko.koyama@colorado.edu

Abstract

Extensive summer sea ice loss has occurred within the Beaufort, Chukchi, East Siberian, and Laptev Seas over the last decade. Associated anomalies in sensible and latent heat fluxes in autumn have increased Arctic atmospheric precipitable water and air temperatures, with the potential to impact autumn and winter cyclone activity. To examine if a connection exists between recent Arctic sea ice loss and cyclone activity, several cyclone metrics from 60° to 90°N are analyzed. Results show that following years with less September sea ice, there is a subsequent increase in moisture availability, regional baroclinicity, and changes in vertical stability that favor cyclogenesis. However, tracking of individual cyclones indicates no coherent increase in cyclone frequency or intensity associated with sea ice loss. Furthermore, no robust northward progression of extreme cyclones is observed.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tomoko Koyama, tomoko.koyama@colorado.edu
Save
  • Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543, doi:10.1175/JCLI3815.1.

  • Boisvert, L. N., A. A. Petty, and J. C. Stroeve, 2016: The impact of the extreme winter 2015/16 Arctic cyclone on the Barents–Kara Seas. Mon. Wea. Rev., 144, 42794287, doi:10.1175/MWR-D-16-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boschat, G., I. Simmonds, A. Purich, T. Cowan, and A. B. Pezza, 2016: On the use of composite analyses to form physical hypotheses: An example from heat wave–SST associations. Sci. Rep., 6, 29599, doi:10.1038/srep29599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carnell, R. E., C. A. Senior, and J. F. B. Mitchell, 1996: An assessment of measures of storminess: Simulated changes in Northern Hemisphere winter due to increasing CO2. Climate Dyn., 12, 467476, doi:10.1007/s003820050121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., C. L. Parkinson, P. Gloersen, J. C. Comiso, and H. J. Zwally, 1999: Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J. Geophys. Res., 104, 15 80315814, doi:10.1029/1999JC900081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2014: Impacts of background field removal on CMIP5 projected changes in Pacific winter cyclone activity. J. Geophys. Res. Atmos., 119, 46264639, doi:10.1002/2013JD020746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, doi:10.1029/2012JD018578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 136162, doi:10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. L., J. C. Furtado, M. A. Barlow, V. A. Alexeev, and J. E. Cherry, 2012: Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett., 7, 014007, doi:10.1088/1748-9326/7/1/014007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, A. D., and M. C. Serreze, 2016: Does the summer Arctic frontal zone influence Arctic Ocean cyclone activity? J. Climate, 29, 49774993, doi:10.1175/JCLI-D-15-0755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Jong, M. F., and L. de Steur, 2016: Strong winter cooling over the Irminger Sea in winter 2014–2015, exceptional deep convection, and the emergence of anomalously low SST. Geophys. Res. Lett., 43, 71067113, doi:10.1002/2016GL069596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Descamps, L., D. Ricard, A. Joly, and P. Arbogast, 2007: Is a real cyclogenesis case explained by generalized linear baroclinic instability? J. Atmos. Sci., 64, 42874308, doi:10.1175/2007JAS2292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, doi:10.3402/tellusa.v1i3.8507.

  • Finnis, J., M. M. Holland, M. C. Serreze, and J. J. Cassano, 2007: Response of Northern Hemisphere extratropical cyclone activity and associated precipitation to climate change, as represented by the Community Climate System Model. J. Geophys. Res., 112, G04S42, doi:10.1029/2006JG000286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., W. Chan, D. J. Leathers, J. R. Miller, and D. E. Veron, 2009: Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett., 36, L07503, doi:10.1029/2009GL037274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, Q., and M. Sugi, 2003: Possible change of extratropical cyclone activity due to enhanced greenhouse gases and sulfate aerosols—Study with a high-resolution AGCM. J. Climate, 16, 22622274, doi:10.1175/1520-0442(2003)16<2262:PCOECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghatak, D., A. Frei, G. Gong, J. Stroeve, and D. Robinson, 2010: On the emergence of an Arctic amplification signal in terrestrial Arctic snow extent. J. Geophys. Res., 115, D24105, doi:10.1029/2010JD014007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghatak, D., C. Deser, A. Frei, G. Gong, A. Phillips, D. A. Robinson, and J. Stroeve, 2012: Simulated Siberian snow cover response to observed Arctic sea ice loss, 1979–2008. J. Geophys. Res., 117, D23108, doi:10.1029/2012JD018047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gitelman, A. I., J. S. Risbey, R. E. Kass, and R. D. Rosen, 1997: Trends in the surface meridional temperature gradient. Geophys. Res. Lett., 24, 12431246, doi:10.1029/97GL01154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., O. Zolina, and S. Grigoriev, 2001: Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data. Climate Dyn., 17, 795809, doi:10.1007/s003820000145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., B. J. Hoskins, P. J. Valdes, and C. A. Senior, 1994: Storm tracks in a high-resolution GCM with doubled carbon dioxide. Quart. J. Roy. Meteor. Soc., 120, 12091230, doi:10.1002/qj.49712051905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., P. D. Jones, R. J. Allan, and T. J. Ansell, 2007: Decadal changes in 1870–2004 Northern Hemisphere winter sea level pressure variability and its relationship with surface temperature. J. Geophys. Res., 112, D11103, doi:10.1029/2006JD007291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35, doi:10.1029/134GM01.

    • Crossref
    • Export Citation
  • Inoue, J., and M. E. Hori, 2011: Arctic cyclogenesis at the marginal ice zone: A contributory mechanism for the temperature amplification? Geophys. Res. Lett., 38, L12502, doi:10.1029/2011GL047696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, J., M. E. Hori, and K. Takaya, 2012: The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J. Climate, 25, 25612568, doi:10.1175/JCLI-D-11-00449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaiser, R., K. Dethloff, D. Handorf, A. Rinke, and J. Cohen, 2012: Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus, 64A, 11595, doi:10.3402/tellusa.v64i0.11595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., S. Low-Nam, and R. J. Reed, 1991: Effects of surface energy fluxes during the early development and rapid intensification stages of seven explosive cyclones in the western Atlantic. Mon. Wea. Rev., 119, 457476, doi:10.1175/1520-0493(1991)119<0457:EOSEFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W.-J., and M. Mak, 1994: Observed variability in the large-scale static stability. J. Atmos. Sci., 51, 21372144, doi:10.1175/1520-0469(1994)051<2137:OVITLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehmann, A., K. Getzlaff, and J. Harlaß, 2011: Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009. Climate Res., 46, 185196, doi:10.3354/cr00876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., T. Woollings, K. Hodges, and G. Masato, 2014: Extratropical cyclones in a warmer, moister climate: A recent Atlantic analogue. Geophys. Res. Lett., 41, 85948601, doi:10.1002/2014GL062186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., and I. Simmonds, 2007: Southern Hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 data in 1979–2001. J. Climate, 20, 26752690, doi:10.1175/JCLI4135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, doi:10.1073/pnas.1114910109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. P. Clark, and M. C. Serreze, 2001: Trends in Northern Hemisphere surface cyclone frequency and intensity. J. Climate, 14, 27632768, doi:10.1175/1520-0442(2001)014<2763:TINHSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., R. W. Katz, and S. H. Schneider, 1984: Extreme high-temperature events: Changes in their probabilities with changes in mean temperature. J. Climate Appl. Meteor., 23, 16011613, doi:10.1175/1520-0450(1984)023<1601:EHTECI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neu, U., and Coauthors, 2013: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Amer. Meteor. Soc., 94, 529547, doi:10.1175/BAMS-D-11-00154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noer, G., and M. Ovhed, 2003: Forecasting of polar lows in the Norwegian and the Barents Sea. Proc. Ninth Meeting of the EGS Polar Lows Working Group, Cambridge, United Kingdom, European Geophysical Society. [Available online at https://web.archive.org/web/20051122020825/https://www2.meteo.uni-bonn.de/mitarbeiter/GHeinemann/eplwg/newl03/noer/wplwg-2003-forecasting_polar_lows.html.]

  • Orsolini, Y. J., R. Senan, R. E. Benestad, and A. Melsom, 2012: Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled ocean–atmosphere hindcasts. Climate Dyn., 38, 24372448, doi:10.1007/s00382-011-1169-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus, 62A, 19, doi:10.1111/j.1600-0870.2009.00421.x.

    • Search Google Scholar
    • Export Citation
  • Paciorek, C. J., J. S. Risbey, V. Ventura, and R. D. Rosen, 2002: Multiple indices of Northern Hemisphere cyclone activity, winters 1949–99. J. Climate, 15, 15731590, doi:10.1175/1520-0442(2002)015<1573:MIONHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., and J. C. Comiso, 2013: On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning and an August storm. Geophys. Res. Lett., 40, 13561361, doi:10.1002/grl.50349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polyakova, E. I., A. G. Journel, I. V. Polyakov, and U. S. Bhatt, 2006: Changing relationship between the North Atlantic Oscillation and key North Atlantic climate parameters. Geophys. Res. Lett., 33, L03711, doi:10.1029/2005GL024573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raible, C. C., P. M. Della-Marta, C. Schwierz, H. Wernli, and R. Blender, 2008: Northern Hemisphere extratropical cyclones: A comparison of detection and tracking methods and different reanalyses. Mon. Wea. Rev., 136, 880897, doi:10.1175/2007MWR2143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E., and J. Turner, 2003: Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge University Press, 612 pp.

    • Crossref
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1997: North Atlantic storm track variability and its association to the North Atlantic Oscillation and climate variability of northern Europe. J. Climate, 10, 16351647, doi:10.1175/1520-0442(1997)010<1635:NASTVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., 1978: Short Course in Cloud Physics. 3rd ed. Butterworth-Heinemann, 304 pp.

  • Romero, R., and K. Emanuel, 2017: Climate change and hurricane-like extratropical cyclones: Projections for North Atlantic polar lows and medicanes based on CMIP5 models. J. Climate, 30, 279299, doi:10.1175/JCLI-D-16-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudeva, I., S. K. Gulev, I. Simmonds, and N. Tilinina, 2014: The sensitivity of characteristics of cyclone activity to identification procedures in tracking algorithms. Tellus, 66A, 24961, doi:10.3402/tellusa.v66.24961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010a: Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett., 37, L16707, doi:10.1029/2010GL044136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010b: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, doi:10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and A. J. Etringer, 2003: Precipitation characteristics of the Eurasian Arctic drainage system. Int. J. Climatol., 23, 12671291, doi:10.1002/joc.941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and A. P. Barrett, 2008: The summer cyclone maximum over the central Arctic Ocean. J. Climate, 21, 10481065, doi:10.1175/2007JCLI1810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2014: The Arctic Climate System. 2nd ed. Cambridge University Press, 404 pp., doi:10.1017/CBO9781139583817.

    • Crossref
    • Export Citation
  • Serreze, M. C., and J. Stroeve, 2015: Arctic sea ice trends, variability and implications for seasonal ice forecasting. Philos. Trans. Roy. Soc. London, 373, 20140159, doi:10.1098/rsta.2014.0159.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., F. Carse, R. G. Barry, and J. C. Rogers, 1997: Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J. Climate, 10, 453464, doi:10.1175/1520-0442(1997)010<0453:ILCACF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. H. Lynch, and M. P. Clark, 2001: The Arctic frontal zone as seen in the NCEP–NCAR reanalysis. J. Climate, 14, 15501567, doi:10.1175/1520-0442(2001)014<1550:TAFZAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, J. C. Stroeve, D. N. Kindig, and M. M. Holland, 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 1119, doi:10.5194/tc-3-11-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, and J. C. Stroeve, 2012: Recent changes in tropospheric water vapor over the Arctic as assessed from radiosondes and atmospheric reanalyses. J. Geophys. Res., 117, D10104, doi:10.1029/2011JD017421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., 2015: Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979–2013. Ann. Glaciol., 56, 1828, doi:10.3189/2015AoG69A909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and K. Keay, 2009: Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979–2008. Geophys. Res. Lett., 36, L19715, doi:10.1029/2009GL039810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and E.-P. Lim, 2009: Biases in the calculation of Southern Hemisphere mean baroclinic eddy growth rate. Geophys. Res. Lett., 36, L01707, doi:10.1029/2008GL036320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and I. Rudeva, 2012: The great Arctic cyclone of August 2012. Geophys. Res. Lett., 39, L23709, doi:10.1029/2012GL054259.

  • Simmonds, I., and I. Rudeva, 2014: A comparison of tracking methods for extreme cyclones in the Arctic basin. Tellus, 66A, 25252, doi:10.3402/tellusa.v66.25252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., K. Keay, and E.-P. Lim, 2003: Synoptic activity in the seas around Antarctica. Mon. Wea. Rev., 131, 272288, doi:10.1175/1520-0493(2003)131<0272:SAITSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., C. Burke, and K. Keay, 2008: Arctic climate change as manifest in cyclone behavior. J. Climate, 21, 57775796, doi:10.1175/2008JCLI2366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorokina, S. A., C. Li, J. J. Wettstein, and N. G. Kvamstø, 2016: Observed atmospheric coupling between Barents Sea ice and the warm-Arctic cold-Siberian anomaly pattern. J. Climate, 29, 495511, doi:10.1175/JCLI-D-15-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., and J. E. Walsh, 2008: Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic. Tellus, 60A, 570586, doi:10.1111/j.1600-0870.2008.00314.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stramler, K., A. D. Del Genio, and W. B. Rossow, 2011: Synoptically driven Arctic winter states. J. Climate, 24, 17471762, doi:10.1175/2010JCLI3817.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., M. C. Serreze, A. Barrett, and D. N. Kindig, 2011: Attribution of recent changes in autumn cyclone associated precipitation in the Arctic. Tellus, 63A, 653663, doi:10.1111/j.1600-0870.2011.00515.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 10051027, doi:10.1007/s10584-011-0101-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., J. Perlwitz, and M. Hoerling, 2016: What caused the recent “warm Arctic, cold continents” trend pattern in winter temperatures? Geophys. Res. Lett., 43, 53455352, doi:10.1002/2016GL069024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., X. Zhang, X. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett., 8, 014036, doi:10.1088/1748-9326/8/1/014036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, doi:10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsukernik, M., D. N. Kindig, and M. C. Serreze, 2007: Characteristics of winter cyclone activity in the northern North Atlantic: Insights from observations and regional modeling. J. Geophys. Res., 112, D03101, doi:10.1029/2006JD007184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., G. C. Leckebusch, and J. G. Pinto, 2009: Extra-tropical cyclones in the present and future climate: A review. Theor. Appl. Climatol., 96, 117131, doi:10.1007/s00704-008-0083-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • Vavrus, S. J., 2013: Extreme Arctic cyclones in CMIP5 historical simulations. Geophys. Res. Lett., 40, 62086212, doi:10.1002/2013GL058161.

  • Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. 2nd ed. Vol. 92, International Geophysics Series, Academic Press, 504 pp.

  • Wang, X. L., V. R. Swail, and F. W. Zwiers, 2006: Climatology and changes of extratropical cyclone activity: Comparison of ERA-40 with NCEP–NCAR reanalysis for 1958–2001. J. Climate, 19, 31453166, doi:10.1175/JCLI3781.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willison, J., W. A. Robinson, and G. M. Lackmann, 2013: The importance of resolving mesoscale latent heating in the North Atlantic storm track. J. Atmos. Sci., 70, 22342250, doi:10.1175/JAS-D-12-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., and R. Caballero, 2016: The role of moist intrusions in winter Arctic warming and sea ice decline. J. Climate, 29, 44734485, doi:10.1175/JCLI-D-15-0773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., B. Harvey, M. Zahn, and L. Shaffrey, 2012: On the role of the ocean in projected atmospheric stability changes in the Atlantic polar low region. Geophys. Res. Lett., 39, L24802, doi:10.1029/2012GL054016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamazaki, A., J. Inoue, K. Dethloff, M. Maturilli, and G. König-Langlo, 2015: Impact of radiosonde observations on forecasting summertime Arctic cyclone formation. J. Geophys. Res. Atmos., 120, 32493273, doi:10.1002/2014JD022925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zahn, M., and H. von Storch, 2010: Decreased frequency of North Atlantic polar lows associated with future climate warming. Nature, 467, 309312, doi:10.1038/nature09388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., R. Lindsay, A. Schweiger, and M. Steele, 2013: The impact of an intense summer cyclone on 2012 Arctic sea ice retreat. Geophys. Res. Lett., 40, 720726, doi:10.1002/grl.50190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. E. Walsh, J. Zhang, U. S. Bhatt, and M. Ikeda, 2004: Climatology and interannual variability of Arctic cyclone activity: 1948–2002. J. Climate, 17, 23002317, doi:10.1175/1520-0442(2004)017<2300:CAIVOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zveryaev, I. I., 1999: Decadal and longer changes of the winter sea level pressure fields and related synoptic activity over the North Atlantic. Int. J. Climatol., 19, 11771185, doi:10.1002/(SICI)1097-0088(199909)19:11<1177::AID-JOC424>3.0.CO;2-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1849 507 42
PDF Downloads 1108 152 22