The Seasonality and Interannual Variability of Arctic Sea Ice Reemergence

Mitchell Bushuk Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey, and Courant Institute of Mathematical Sciences, New York University, New York, New York

Search for other papers by Mitchell Bushuk in
Current site
Google Scholar
PubMed
Close
and
Dimitrios Giannakis Courant Institute of Mathematical Sciences, New York University, New York, New York

Search for other papers by Dimitrios Giannakis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

There is a significant gap between the potential predictability of Arctic sea ice area and the current forecast skill of operational prediction systems. One route to closing this gap is improving understanding of the physical mechanisms, such as sea ice reemergence, which underlie this inherent predictability. Sea ice reemergence refers to the tendency of melt-season sea ice area anomalies to recur the following growth season and growth-season anomalies to recur the following melt season. This study builds on earlier work, providing a mode-based analysis of the seasonality and interannual variability of three distinct reemergence mechanisms. These mechanisms are studied using a common set of coupled modes of variability obtained via coupled nonlinear Laplacian spectral analysis, a data analysis technique for high-dimensional multivariate datasets. The coupled modes capture the covariability of sea ice concentration (SIC), sea surface temperature (SST), sea level pressure (SLP), and sea ice thickness (SIT) in a control integration of a global climate model. Using a parsimonious reemergence mode family, the spatial characteristics of growth-to-melt reemergence are studied, and an SIT–SIC reemergence mechanism is examined. A set of reemergence metrics to quantify the amplitude and phase of growth-to-melt reemergence are introduced. Metrics quantifying SST–SIC and SLP–SIC mechanisms for melt-to-growth reemergence are also computed. A simultaneous comparison of the three reemergence mechanisms, with focus on their seasonality and interannual variability, is performed. Finally, the conclusions are tested in a model hierarchy, consisting of models that share the same sea ice component but differ in their atmospheric and oceanic formulation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mitch Bushuk, mitchell.bushuk@noaa.gov

Abstract

There is a significant gap between the potential predictability of Arctic sea ice area and the current forecast skill of operational prediction systems. One route to closing this gap is improving understanding of the physical mechanisms, such as sea ice reemergence, which underlie this inherent predictability. Sea ice reemergence refers to the tendency of melt-season sea ice area anomalies to recur the following growth season and growth-season anomalies to recur the following melt season. This study builds on earlier work, providing a mode-based analysis of the seasonality and interannual variability of three distinct reemergence mechanisms. These mechanisms are studied using a common set of coupled modes of variability obtained via coupled nonlinear Laplacian spectral analysis, a data analysis technique for high-dimensional multivariate datasets. The coupled modes capture the covariability of sea ice concentration (SIC), sea surface temperature (SST), sea level pressure (SLP), and sea ice thickness (SIT) in a control integration of a global climate model. Using a parsimonious reemergence mode family, the spatial characteristics of growth-to-melt reemergence are studied, and an SIT–SIC reemergence mechanism is examined. A set of reemergence metrics to quantify the amplitude and phase of growth-to-melt reemergence are introduced. Metrics quantifying SST–SIC and SLP–SIC mechanisms for melt-to-growth reemergence are also computed. A simultaneous comparison of the three reemergence mechanisms, with focus on their seasonality and interannual variability, is performed. Finally, the conclusions are tested in a model hierarchy, consisting of models that share the same sea ice component but differ in their atmospheric and oceanic formulation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mitch Bushuk, mitchell.bushuk@noaa.gov
Save
  • Belkin, M., and P. Niyogi, 2003: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput., 15, 13731396, doi:10.1162/089976603321780317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitz, C., and G. Roe, 2004: A mechanism for the high rate of sea ice thinning in the Arctic Ocean. J. Climate, 17, 36233632, doi:10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitz, C., K. Shell, P. Gent, D. Bailey, G. Danabasoglu, K. Armour, M. Holland, and J. Kiehl, 2012: Climate sensitivity of the Community Climate System Model, version 4. J. Climate, 25, 30533070, doi:10.1175/JCLI-D-11-00290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., and C. M. Bitz, 2014: Characteristics of Arctic sea-ice thickness variability in GCMs. J. Climate, 27, 82448258, doi:10.1175/JCLI-D-14-00345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., K. C. Armour, C. M. Bitz, and E. DeWeaver, 2011a: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J. Climate, 24, 231250, doi:10.1175/2010JCLI3775.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., C. Bitz, and M. Holland, 2011b: Influence of initial conditions and climate forcing on predicting Arctic sea ice. Geophys. Res. Lett., 38, L18503, doi:10.1029/2011GL048807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broomhead, D. S., and G. P. King, 1986: Extracting qualitative dynamics from experimental data. Physica D, 20, 217236, doi:10.1016/0167-2789(86)90031-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M., 1969: The effect of solar radiation variations on the climate of the earth. Tellus, 21, 611619, doi:10.3402/tellusa.v21i5.10109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushuk, M., and D. Giannakis, 2015: Sea-ice reemergence in a model hierarchy. Geophys. Res. Lett., 42, 53375345, doi:10.1002/2015GL063972.

  • Bushuk, M., D. Giannakis, and A. J. Majda, 2014: Reemergence mechanisms for North Pacific sea ice revealed through nonlinear Laplacian spectral analysis. J. Climate, 27, 62656287, doi:10.1175/JCLI-D-13-00256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushuk, M., D. Giannakis, and A. J. Majda, 2015: Arctic sea ice reemergence: The role of large-scale oceanic and atmospheric variability. J. Climate, 28, 54775509, doi:10.1175/JCLI-D-14-00354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., C. Parkinson, N. DiGirolamo, and A. Ivanoff, 2012: Intersensor calibration between F13 SSMI and F17 SSMIS for global sea ice data records. IEEE Trans. Geosci. Remote Sens., 9, 233236, doi:10.1109/LGRS.2011.2166754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevallier, M., and D. Salas y Mélia, 2012: The role of sea ice thickness distribution in the Arctic sea ice potential predictability: A diagnostic approach with a coupled GCM. J. Climate, 25, 30253038, doi:10.1175/JCLI-D-11-00209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevallier, M., D. Salas y Mélia, A. Voldoire, M. Déqué, and G. Garric, 2013: Seasonal forecasts of the pan-Arctic sea ice extent using a GCM-based seasonal prediction system. J. Climate, 26, 60926104, doi:10.1175/JCLI-D-12-00612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coifman, R. R., and S. Lafon, 2006: Diffusion maps. Appl. Comput. Harmonic Anal., 21, 530, doi:10.1016/j.acha.2006.04.006.

  • Collow, T. W., W. Wang, A. Kumar, and J. Zhang, 2015: Improving Arctic sea ice prediction using PIOMAS initial sea ice thickness in a coupled ocean–atmosphere model. Mon. Wea. Rev., 143, 46184630, doi:10.1175/MWR-D-15-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., J. L. Schramm, and E. E. Ebert, 1995: Sea ice–albedo climate feedback mechanism. J. Climate, 8, 240247, doi:10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2014: North Atlantic simulations in Coordinated Ocean–Ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modell., 73, 76107, doi:10.1016/j.ocemod.2013.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, J., E. Hawkins, and S. Tietsche, 2014a: Will Arctic sea ice thickness initialization improve seasonal forecast skill? Geophys. Res. Lett., 41, 75667575, doi:10.1002/2014GL061694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, J., S. Tietsche, and E. Hawkins, 2014b: Pan-Arctic and regional sea ice predictability: Initialization month dependence. J. Climate, 27, 43714390, doi:10.1175/JCLI-D-13-00614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

  • Germe, A., M. Chevallier, D. Salas y Mélia, E. Sanchez-Gomez, and C. Cassou, 2014: Interannual predictability of Arctic sea ice in a global climate model: Regional contrasts and temporal evolution. Climate Dyn., 43, 25192538, doi:10.1007/s00382-014-2071-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannakis, D., and A. J. Majda, 2012a: Comparing low-frequency and intermittent variability in comprehensive climate models through nonlinear Laplacian spectral analysis. Geophys. Res. Lett., 39, L10710, doi:10.1029/2012GL051575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannakis, D., and A. J. Majda, 2012b: Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability. Proc. Natl. Acad. Sci. USA, 109, 22222227, doi:10.1073/pnas.1118984109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannakis, D., and A. J. Majda, 2013: Nonlinear Laplacian spectral analysis: Capturing intermittent and low-frequency spatiotemporal patterns in high-dimensional data. Stat. Anal. Data Min., 6, 180194, doi:10.1002/sam.11171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guemas, V., M. Chevallier, M. Déqué, O. Bellprat, and F. Doblas-Reyes, 2016: Impact of sea ice initialization on sea ice and atmosphere prediction skill on seasonal timescales. Geophys. Res. Lett., 43, 38893896, doi:10.1002/2015GL066626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., C. Bitz, E. Hunke, W. Lipscomb, and J. Schramm, 2006a: Influence of the sea ice thickness distribution on polar climate in CCSM3. J. Climate, 19, 23982414, doi:10.1175/JCLI3751.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., C. Bitz, and B. Tremblay, 2006b: Future abrupt reductions in the summer Arctic sea ice. Geophys. Res. Lett., 33, L23503, doi:10.1029/2006GL028024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., D. A. Bailey, and S. Vavrus, 2011: Inherent sea ice predictability in the rapidly changing Arctic environment of the Community Climate System Model, version 3. Climate Dyn., 36, 12391253, doi:10.1007/s00382-010-0792-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jahn, A., and Coauthors, 2012: Late-twentieth-century simulation of Arctic sea ice and ocean properties in the CCSM4. J. Climate, 25, 14311452, doi:10.1175/JCLI-D-11-00201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenigk, T., and U. Mikolajewicz, 2009: Seasonal to interannual climate predictability in mid and high northern latitudes in a global coupled model. Climate Dyn., 32, 783798, doi:10.1007/s00382-008-0419-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., and D. Rothrock, 2009: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett., 36, L15501, doi:10.1029/2009GL039035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., and S. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., and J. Zhang, 2005: The thinning of Arctic sea ice, 1988–2003: Have we passed a tipping point? J. Climate, 18, 48794894, doi:10.1175/JCLI3587.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., and Coauthors, 2012: Seasonal forecasts of Arctic sea ice initialized with observations of ice thickness. Geophys. Res. Lett., 39, L21502, doi:10.1029/2012GL053576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslanik, J., C. Fowler, J. Stroeve, S. Drobot, J. Zwally, D. Yi, and W. Emery, 2007: A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss. Geophys. Res. Lett., 34, L24501, doi:10.1029/2007GL032043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslanik, J., J. Stroeve, C. Fowler, and W. Emery, 2011: Distribution and trends in Arctic sea ice age through spring 2011. Geophys. Res. Lett., 38, L13502, doi:10.1029/2011GL047735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maykut, G. A., 1978: Energy exchange over young sea ice in the central Arctic. J. Geophys. Res., 83, 36463658, doi:10.1029/JC083iC07p03646.

  • Merryfield, W., W.-S. Lee, W. Wang, M. Chen, and A. Kumar, 2013: Multi-system seasonal predictions of Arctic sea ice. Geophys. Res. Lett., 40, 15511556, doi:10.1002/grl.50317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Msadek, R., G. Vecchi, M. Winton, and R. Gudgel, 2014: Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophys. Res. Lett., 41, 52085215, doi:10.1002/2014GL060799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owens, W. B. and P. Lemke, 1990: Sensitivity studies with a sea ice–mixed layer–pycnocline model in the Weddell Sea. J. Geophys. Res., 95, 95279538, doi:10.1029/JC095iC06p09527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Packard, N. H., J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, 1980: Geometry from a time series. Phys. Rev. Lett., 45, 712716, doi:10.1103/PhysRevLett.45.712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., and C. Polashenski, 2012: Albedo evolution of seasonal Arctic sea ice. Geophys. Res. Lett., 39, L08501, doi:10.1029/2012GL051432.

  • Peterson, K. A., A. Arribas, H. Hewitt, A. Keen, D. Lea, and A. McLaren, 2015: Assessing the forecast skill of Arctic sea ice extent in the GloSea4 seasonal prediction system. Climate Dyn., 44, 147162, doi:10.1007/s00382-014-2190-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., and J. M. Wallace, 2004: Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophys. Res. Lett., 31, L09401, doi:10.1029/2004GL019492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothrock, D. A., Y. Yu, and G. A. Maykut, 1999: Thinning of the Arctic sea-ice cover. Geophys. Res. Lett., 26, 34693472, doi:10.1029/1999GL010863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sauer, T., J. A. Yorke, and M. Casdagli, 1991: Embedology. J. Stat. Phys., 65, 579616, doi:10.1007/BF01053745.

  • Serreze, M. C., M. M. Holland, and J. Stroeve, 2007: Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315, 15331536, doi:10.1126/science.1139426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. Fyfe, G. Flato, V. Kharin, and W. Merryfield, 2013: Seasonal forecast skill of Arctic sea ice area in a dynamical forecast system. Geophys. Res. Lett., 40, 529534, doi:10.1002/grl.50129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., T. Markus, L. Boisvert, J. Miller, and A. Barrett, 2014: Changes in Arctic melt season and implications for sea ice loss. Geophys. Res. Lett., 41, 12161225, doi:10.1002/2013GL058951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tietsche, S., and Coauthors, 2014: Seasonal to interannual Arctic sea ice predictability in current global climate models. Geophys. Res. Lett., 41, 10351043, doi:10.1002/2013GL058755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., and M. Ghil, 1989: Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D, 35, 395424, doi:10.1016/0167-2789(89)90077-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., M. Chen, and A. Kumar, 2013: Seasonal prediction of Arctic sea ice extent from a coupled dynamical forecast system. Mon. Wea. Rev., 141, 13751394, doi:10.1175/MWR-D-12-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., 2006: Does the Arctic sea ice have a tipping point? Geophys. Res. Lett., 33, L23504, doi:10.1029/2006GL028017.

  • Wu, B., J. Wang, and J. E. Walsh, 2006: Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J. Climate, 19, 210225, doi:10.1175/JCLI3619.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., S. N. Losa, M. Losch, X. Tian-Kunze, L. Nerger, J. Liu, L. Kaleschke, and Z. Zhang, 2014: Assimilating SMOS sea ice thickness into a coupled ice–ocean model using a local SEIK filter. J. Geophys. Res. Oceans, 119, 66806692, doi:10.1002/2014JC009963.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2137 847 49
PDF Downloads 479 84 7