Impacts of Storm-Track Variations on Wintertime Extreme Weather Events over the Continental United States

Chen-Geng Ma School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Chen-Geng Ma in
Current site
Google Scholar
PubMed
Close
and
Edmund K. M. Chang School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Edmund K. M. Chang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extratropical cyclones are responsible for many of the high-impact weather events over the United States, including extreme cold, extreme high wind, and extreme heavy precipitation. In this study, impacts from the variations of the cyclone (or storm-track) activity on these extreme events are examined through composites based on map-averaged cyclone activity. Increased cyclone activity enhances the frequency of extreme cold and high wind events over much of the United States, and impacts extreme precipitation around the Ohio River valley. These impacts are largely due to a changing of the tail of the distribution rather than a shifting of the mean. To systematically study these impacts, three singular value decomposition (SVD) analyses have been conducted, each one between the cyclone activity and one kind of extreme event frequency. All three SVD leading modes represent a pattern of overall increase or decrease of storm tracks over the United States. The average of the time series of these leading modes is highly correlated with the observed map-averaged storm track and strongly associated with the Pacific–North America (PNA) pattern and El Niño–Southern Oscillation (ENSO). However, composites based on either the PNA pattern or ENSO do not show as strong impacts as the map-averaged storm track. A second common SVD mode is found that correlates weakly with the North Pacific mode and is likely to be largely due to internal variability. Finally, the potential impacts of projected storm-track change on the frequency of extreme events are examined, indicating that the projected storm-track decrease over North America may give rise to some reduction in the frequency of extreme events.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0560.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Edmund K. M. Chang, kar.chang@stonybrook.edu

Abstract

Extratropical cyclones are responsible for many of the high-impact weather events over the United States, including extreme cold, extreme high wind, and extreme heavy precipitation. In this study, impacts from the variations of the cyclone (or storm-track) activity on these extreme events are examined through composites based on map-averaged cyclone activity. Increased cyclone activity enhances the frequency of extreme cold and high wind events over much of the United States, and impacts extreme precipitation around the Ohio River valley. These impacts are largely due to a changing of the tail of the distribution rather than a shifting of the mean. To systematically study these impacts, three singular value decomposition (SVD) analyses have been conducted, each one between the cyclone activity and one kind of extreme event frequency. All three SVD leading modes represent a pattern of overall increase or decrease of storm tracks over the United States. The average of the time series of these leading modes is highly correlated with the observed map-averaged storm track and strongly associated with the Pacific–North America (PNA) pattern and El Niño–Southern Oscillation (ENSO). However, composites based on either the PNA pattern or ENSO do not show as strong impacts as the map-averaged storm track. A second common SVD mode is found that correlates weakly with the North Pacific mode and is likely to be largely due to internal variability. Finally, the potential impacts of projected storm-track change on the frequency of extreme events are examined, indicating that the projected storm-track decrease over North America may give rise to some reduction in the frequency of extreme events.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0560.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Edmund K. M. Chang, kar.chang@stonybrook.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.64 MB)
Save
  • Abatan, A. A., B. J. Abiodun, K. A. Lawal, and W. J. Gutowski, 2016: Trends in extreme temperature over Nigeria from percentile-based threshold indices. Int. J. Climatol., 36, 25272540, doi:10.1002/joc.4510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., S. F. B. Tett, and T. Jonsson, 2005: Recent observed changes in severe storms over the United Kingdom and Iceland. Geophys. Res. Lett., 32, L13704, doi:10.1029/2005GL022371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angel, J. R., and S. Isard, 1998: The frequency and intensity of Great Lake cyclones. J. Climate, 11, 6171, doi:10.1175/1520-0442(1998)011<0061:TFAIOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., and A. W. Black, 2008: Fatalities associated with nonconvective high-wind events in the United States. J. Appl. Meteor. Climatol., 47, 717725, doi:10.1175/2007JAMC1689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543, doi:10.1175/JCLI3815.1.

  • Bengtsson, L., K. I. Hodges, and N. Keenlyside, 2009: Will extratropical storms intensify in a warmer climate? J. Climate, 22, 22762301, doi:10.1175/2008JCLI2678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., J. M. Wallace, N.-C. Lau, and S. L. Mullen, 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 34, 10401053, doi:10.1175/1520-0469(1977)034<1040:AOSOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., Y.-H. Lee, and H.-H. Hsu, 1984a: Time variation of 500-mb height fluctuations with long, intermediate and short time scales as deduced from lag-correlation statistics. J. Atmos. Sci., 41, 981991, doi:10.1175/1520-0469(1984)041<0981:TVOMHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., Y.-H. Lee, and J. M. Wallace, 1984b: Horizontal structure of 500-mb height fluctuations with long, intermediate and short time scales. J. Atmos. Sci., 41, 961979, doi:10.1175/1520-0469(1984)041<0961:HSOMHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., S. Wang, and L. Polvani, 2013: Midlatitude storms in a moister world: Lessons from idealized baroclinic life cycle experiments. Climate Dyn., 41, 787802, doi:10.1007/s00382-012-1472-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., 1981: The Presidents’ Day Snowstorm of 18–19 February 1979: A subsynoptic-scale event. Mon. Wea. Rev., 109, 15421566, doi:10.1175/1520-0493(1981)109<1542:TPDSOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C., C. Smith, and J. Wallace, 1992: An intercomparison of methods to find coupled patterns in climate data. J. Climate, 5, 541560, doi:10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caesar, J., L. Alexander, and R. Vose, 2006: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. J. Geophys. Res., 111, D05101, doi:10.1029/2005JD006280.

    • Search Google Scholar
    • Export Citation
  • Cai, M., and M. Mak, 1990: Symbiotic relation between planetary and synoptic-scale waves. J. Atmos. Sci., 47, 29532968, doi:10.1175/1520-0469(1990)047<2953:SRBPAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cardone, V. J., R. E. Jensen, D. T. Resio, V. R. Swail, and A. T. Cox, 1996: Evaluation of contemporary ocean wave models in rare extreme events: The “Halloween storm” of October 1991 and the “storm of the century” of March 1993. J. Atmos. Oceanic Technol., 13, 198230, doi:10.1175/1520-0426(1996)013<0198:EOCOWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2013: CMIP5 projection of significant reduction in extratropical cyclone activity over North America. J. Climate, 26, 99039922, doi:10.1175/JCLI-D-13-00209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, doi:10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., C.-G. Ma, C. Zheng, and A. M. W. Yau, 2016: Observed and projected decrease in Northern Hemisphere extratropical cyclone activity in summer and its impacts on maximum temperature. Geophys. Res. Lett., 43, 22002208, doi:10.1002/2016GL068172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., and Coauthors, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, doi:10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701, doi:10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Dickson, R. R., and J. Namias, 1976: North American influences on the circulation and climate of the North Atlantic sector. Mon. Wea. Rev., 104, 12551265, doi:10.1175/1520-0493(1976)104<1255:NAIOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichler, T., and W. Higgins, 2006: Climatology and ENSO-related variability of North American extratropical cyclone activity. J. Climate, 19, 20762093, doi:10.1175/JCLI3725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, doi:10.1029/2005GL023272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feser, F., M. Barcikowska, O. Krueger, F. Schenk, R. Weisse, and L. Xia, 2015: Storminess over the North Atlantic and northwestern Europe—A review. Quart. J. Roy. Meteor. Soc., 141, 350382, doi:10.1002/qj.2364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2006: Robust increases in midlatitude static stability in simulations of global warming. Geophys. Res. Lett., 33, L24816, doi:10.1029/2006GL027504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., S. W. Son, and J. R. Gyakum, 2013: Intraseasonal and interannual variability in North American storm tracks and its relationship to equatorial Pacific variability. Mon. Wea. Rev., 141, 36103625, doi:10.1175/MWR-D-12-00322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2015: Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett., 42, 18941902, doi:10.1002/2015GL063083.

  • Harvey, B. J., L. C. Shaffrey, T. J. Woollings, G. Zappa, and K. I. Hodges, 2012: How large are projected 21st century storm track changes? Geophys. Res. Lett., 39, L18707, doi:10.1029/2012GL052873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I., and B. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

  • Higgins, R. W., A. Leetmaa, and V. E. Kousky, 2002: Relationships between climate variability and winter temperature extremes in the United States. J. Climate, 15, 15551572, doi:10.1175/1520-0442(2002)015<1555:RBCVAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsch, M. E., A. T. DeGaetano, and S. J. Colucci, 2001: An East Coast winter storm climatology. J. Climate, 14, 882899, doi:10.1175/1520-0442(2001)014<0882:AECWSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127, 13621373, doi:10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232, doi:10.1007/s00382-003-0332-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, doi:10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. W., 1999: First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Wea. Rev., 127, 22042210, doi:10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karremann, M. K., J. G. Pinto, M. Reyers, and M. Klawa, 2014: Return periods of losses associated with European windstorm series in a changing climate. Environ. Res. Lett., 9, 124016, doi:10.1088/1748-9326/9/12/124016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klawa, M., and U. Ulbrich, 2003: A model for the estimation of storm losses and the identification of severe winter storms in Germany. Nat. Hazards Earth Syst. Sci., 3, 725732, doi:10.5194/nhess-3-725-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., and J. R. Angel, 1999: Relationship of ENSO to snowfall and related cyclone activity in the contiguous United States. J. Geophys. Res., 104, 19 42519 434, doi:10.1029/1999JD900010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, D. A. R. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2012: Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J. Hydrometeor., 13, 11311141, doi:10.1175/JHM-D-11-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J., J. Williams, and S. Vavrus, 2005: Simulated 21st century changes in regional water balance of the Great Lakes region and links to changes in global temperature and poleward moisture transport. Geophys. Res. Lett., 32, L17707, doi:10.1029/2005GL023506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1978: On the three-dimensional structure of the observed transient eddy statistics of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 35, 19001923, doi:10.1175/1520-0469(1978)035<1900:OTTDSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743, doi:10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leathers, D. J., B. Yarnal, and M. A. Palecki, 1991: The Pacific/North American teleconnection pattern and United States climate. Part I: Regional temperature and precipitation associations. J. Climate, 4, 517528, doi:10.1175/1520-0442(1991)004<0517:TPATPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., and I. Simmonds, 2009: Effects of tropospheric temperature change on zonal mean circulation and SH winter extratropical cyclones. Climate Dyn., 33, 1932, doi:10.1007/s00382-008-0444-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., and M. Cai, 2009: Seasonality of polar surface warming amplification in climate simulations. Geophys. Res. Lett., 36, L16704, doi:10.1029/2009GL040133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Namias, J., 1978: Multiple causes of the North American abnormal winter of 1976–77. Mon. Wea. Rev., 106, 279295, doi:10.1175/1520-0493(1978)106<0279:MCOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neu, U., and Coauthors, 2013: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Amer. Meteor. Soc., 94, 529547, doi:10.1175/BAMS-D-11-00154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ning, L., and R. S. Bradley, 2015: Winter climate extremes over the northeastern United States and southeastern Canada and teleconnections with large-scale modes of climate variability. J. Climate, 28, 24752493, doi:10.1175/JCLI-D-13-00750.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noel, J., and D. Changnon, 1998: A pilot study examining U.S. winter cyclone frequency patterns associated with three ENSO parameters. J. Climate, 11, 21522159, doi:10.1175/1520-0442-11.8.2152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1956: Weather Analysis and Forecasting. Vol. 1, McGraw-Hill, 428 pp.

  • Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of cyclones for precipitation extremes. J. Climate, 25, 67706780, doi:10.1175/JCLI-D-11-00705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1985: El Niño and La Niña. J. Atmos. Sci., 42, 26522662, doi:10.1175/1520-0469(1985)042<2652:ENALN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1990: El Niño, La Niña and the Southern Oscillation. Academic Press, 293 pp.

  • Raible, C. C., P. M. Della-Marta, C. Schwierz, H. Wernli, and R. Blender, 2008: Northern Hemisphere extratropical cyclones: A comparison of detection and tracking methods and different reanalyses. Mon. Wea. Rev., 136, 880897, doi:10.1175/2007MWR2143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, doi:10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen Roy, S., and R. C. Balling, 2004: Trends in extreme daily precipitation indices in India. Int. J. Climatol., 24, 457466, doi:10.1002/joc.995.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., G.-H. Lim, and M. L. Blackmon, 1988: Relationship between cyclone tracks, anticyclone tracks, and baroclinic waveguides. J. Atmos. Sci., 45, 439462, doi:10.1175/1520-0469(1988)045<0439:RBCTAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., M. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima, and C. Liu, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, doi:10.1175/JHM583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and R. Rotunno, 2002: Mesoscale predictability of the “surprise” snowstorm of 24–25 January 2000. Mon. Wea. Rev., 130, 16171632, doi:10.1175/1520-0493(2002)130<1617:MPOTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1234 573 59
PDF Downloads 696 131 26