Climate Models Lack Jet–Rainfall Coupling over West Africa

D. Whittleston Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by D. Whittleston in
Current site
Google Scholar
PubMed
Close
,
S. E. Nicholson Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida

Search for other papers by S. E. Nicholson in
Current site
Google Scholar
PubMed
Close
,
A. Schlosser Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by A. Schlosser in
Current site
Google Scholar
PubMed
Close
, and
D. Entekhabi Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by D. Entekhabi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Changes in large-scale dynamics over West Africa—the strength and position of zonal jets—are a key interim step by which local and remote forcing is communicated into changes in rainfall. This study identifies a key mode of jet variability and demonstrates how it is strongly coupled with rainfall. The approach provides a quantitative framework to assess jet–rainfall coupling and a useful tool to investigate the concerning spread in CMIP5 rainfall projections over the West African Sahel. It is shown that many CMIP5 simulations fail to capture this coupling, indicating a fundamental limitation in their ability to predict future rainfall conditions. The results demonstrate that West African rainfall in the coming CMIP6 ensemble should be interpreted with caution; key atmospheric processes that deliver rainfall must be validated before conducting detailed analysis on rainfall.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0579.s1.

Corresponding author e-mail: David Whittleston, dwhittle@mit.edu

Abstract

Changes in large-scale dynamics over West Africa—the strength and position of zonal jets—are a key interim step by which local and remote forcing is communicated into changes in rainfall. This study identifies a key mode of jet variability and demonstrates how it is strongly coupled with rainfall. The approach provides a quantitative framework to assess jet–rainfall coupling and a useful tool to investigate the concerning spread in CMIP5 rainfall projections over the West African Sahel. It is shown that many CMIP5 simulations fail to capture this coupling, indicating a fundamental limitation in their ability to predict future rainfall conditions. The results demonstrate that West African rainfall in the coming CMIP6 ensemble should be interpreted with caution; key atmospheric processes that deliver rainfall must be validated before conducting detailed analysis on rainfall.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0579.s1.

Corresponding author e-mail: David Whittleston, dwhittle@mit.edu

Supplementary Materials

    • Supplemental Materials (DOCX 2.21 MB)
Save
  • Ackerley, D., B. Booth, S. Knight, E. Highwood, D. Frame, M. Allen, and D. Rowell, 2011: Sensitivity of twentieth-century Sahel rainfall to sulfate aerosol and CO2 forcing. J. Climate, 24, 49995014, doi:10.1175/JCLI-D-11-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biasutti, M., 2013: Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. Atmos., 118, 16131623, doi:10.1002/jgrd.50206.

  • Biasutti, M., and A. Giannini, 2006: Robust Sahel drying in response to late 20th century forcings. Geophys. Res. Lett., 33, L11706, doi:10.1029/2006GL026067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, doi:10.1038/nature10946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., 2008: Climate science: The mysteries of Sahel droughts. Nat. Geosci., 1, 647648, doi:10.1038/ngeo320.

  • Diallo, I., M. B. Sylla, M. Camara, and A. T. Gaye, 2013: Interannual variability of rainfall over the Sahel based on multiple regional climate models simulations. Theor. Appl. Climatol., 113, 351362, doi:10.1007/s00704-012-0791-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., and R. Sutton, 2015: Dominant role of greenhouse-gas forcing in the recovery of Sahel rainfall. Nat. Climate Change, 5, 757760, doi:10.1038/nclimate2664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grist, J. P., and S. E. Nicholson, 2001: A study of the dynamic factors influencing the rainfall variability in the West African Sahel. J. Climate, 14, 13371359, doi:10.1175/1520-0442(2001)014<1337:ASOTDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S., and C. Zhang, 2010: Diabatic heating, divergent circulation and moisture transport in the African monsoon system. Quart. J. Roy. Meteor. Soc., 136, 411425, doi:10.1002/qj.538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., A. Jones, N. Bellouin, and D. Stephenson, 2013: Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat. Climate Change, 3, 660665, doi:10.1038/nclimate1857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2013: LMDZ5B: The atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Climate Dyn., 40, 21932222, doi:10.1007/s00382-012-1343-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 1986: The spatial coherence of African rainfall anomalies: Interhemispheric teleconnections. J. Climate Appl. Meteor., 25, 13651381, doi:10.1175/1520-0450(1986)025<1365:TSCOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2001: Climatic and environmental change in Africa during the last two centuries. Climate Res., 17, 123144, doi:10.3354/cr017123.

  • Nicholson, S. E., 2008: The intensity, location and structure of the tropical rainbelt over West Africa as factors in interannual variability. Int. J. Climatol., 28, 17751785, doi:10.1002/joc.1507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2013: The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteor., 2013, 453521, doi:10.1155/2013/453521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., A. I. Barcilon, and M. Challa, 2008: An analysis of West African dynamics using a linearized GCM. J. Atmos. Sci., 65, 11821203, doi:10.1175/2007JAS2194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J.-Y., J. Bader, and D. Matei, 2015: Northern-Hemispheric differential warming is the key to understanding the discrepancies in the projected Sahel rainfall. Nat. Commun., 6, 5985, doi:10.1038/ncomms6985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quadrelli, R., C. S. Bretherton, and J. M. Wallace, 2005: On sampling errors in empirical orthogonal functions. J. Climate, 18, 37043710, doi:10.1175/JCLI3500.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., and Coauthors, 2015: Variability and predictability of West African droughts: A review on the role of sea surface temperature anomalies. J. Climate, 28, 40344060, doi:10.1175/JCLI-D-14-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roehrig, R., D. Bouniol, F. Guichard, F. D. Hourdin, and J. L. Redelsperger, 2013: The present and future of the West African monsoon: A process-oriented assessment of CMIP5 simulations along the AMMA transect. J. Climate, 26, 64716505, doi:10.1175/JCLI-D-12-00505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sathiyamoorthy, V., 2005: Large scale reduction in the size of the tropical easterly jet. Geophys. Res. Lett., 32, L14802, doi:10.1029/2005GL022956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, C. B., and N. S. Diffenbaugh, 2013: The contribution of African easterly waves to monsoon precipitation in the CMIP3 ensemble. J. Geophys. Res. Atmos., 118, 35903609, doi:10.1002/jgrd.50363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sylla, M. B., I. Diallo, and J. S. Pal, 2013: West African monsoon in state-of-the-science regional climate models. Climate Variability—Regional and Thematic Patterns, A. Tarhule, Ed., InTech, 3–36, doi:10.5772/55140.

    • Crossref
    • Export Citation
  • Taylor, C. M., A. Gounou, F. Guichard, P. Harris, R. Ellis, F. Couvreux, and M. De Kauwe, 2011: Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci., 4, 430433, doi:10.1038/ngeo1173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, Y., Y. Lin, M. Lo, and S. Yang, 2016: Diagnosing the possible dynamics controlling Sahel precipitation in the short-range ensemble community atmospheric model hindcasts. Climate Dyn., 47, 27472764, doi:10.1007/s00382-016-2995-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Ventura, V., C. J. Paciorek, and J. S. Risbey, 2004: Controlling the proportion of falsely rejected hypotheses when conducting multiple tests with climatological data. J. Climate, 17, 43434356, doi:10.1175/3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and Coauthors, 2003: GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16, 21972214, doi:10.1175/2769.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1276 629 30
PDF Downloads 324 68 7