On the Seasonality of Arctic Black Carbon

Zhaoyi Shen Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Zhaoyi Shen in
Current site
Google Scholar
PubMed
Close
,
Yi Ming NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Yi Ming in
Current site
Google Scholar
PubMed
Close
,
Larry W. Horowitz NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Larry W. Horowitz in
Current site
Google Scholar
PubMed
Close
,
V. Ramaswamy NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by V. Ramaswamy in
Current site
Google Scholar
PubMed
Close
, and
Meiyun Lin Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Meiyun Lin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Arctic haze has a distinct seasonal cycle with peak concentrations in winter but pristine conditions in summer. It is demonstrated that the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric general circulation model (AM3) can reproduce the observed seasonality of Arctic black carbon (BC), an important component of Arctic haze. The model is used to study how large-scale circulation and removal drive the seasonal cycle of Arctic BC. It is found that despite large seasonal shifts in the general circulation pattern, the transport of BC into the Arctic varies little throughout the year. The seasonal cycle of Arctic BC is attributed mostly to variations in the controlling factors of wet removal, namely the hydrophilic fraction of BC and wet deposition efficiency of hydrophilic BC. Specifically, a confluence of low hydrophilic fraction and weak wet deposition, owing to slower aging process and less efficient mixed-phase cloud scavenging, respectively, is responsible for the wintertime peak of BC. The transition to low BC in summer is the consequence of a gradual increase in the wet deposition efficiency, whereas the increase of BC in late fall can be explained by a sharp decrease in the hydrophilic fraction. The results presented here suggest that future changes in the aging and wet deposition processes can potentially alter the concentrations of Arctic aerosols and their climate effects.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhaoyi Shen, zs@princeton.edu

Abstract

Arctic haze has a distinct seasonal cycle with peak concentrations in winter but pristine conditions in summer. It is demonstrated that the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric general circulation model (AM3) can reproduce the observed seasonality of Arctic black carbon (BC), an important component of Arctic haze. The model is used to study how large-scale circulation and removal drive the seasonal cycle of Arctic BC. It is found that despite large seasonal shifts in the general circulation pattern, the transport of BC into the Arctic varies little throughout the year. The seasonal cycle of Arctic BC is attributed mostly to variations in the controlling factors of wet removal, namely the hydrophilic fraction of BC and wet deposition efficiency of hydrophilic BC. Specifically, a confluence of low hydrophilic fraction and weak wet deposition, owing to slower aging process and less efficient mixed-phase cloud scavenging, respectively, is responsible for the wintertime peak of BC. The transition to low BC in summer is the consequence of a gradual increase in the wet deposition efficiency, whereas the increase of BC in late fall can be explained by a sharp decrease in the hydrophilic fraction. The results presented here suggest that future changes in the aging and wet deposition processes can potentially alter the concentrations of Arctic aerosols and their climate effects.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhaoyi Shen, zs@princeton.edu
Save
  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, doi:10.1038/nature04141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrie, L. A., 1986: Arctic air pollution: An overview of current knowledge. Atmos. Environ., 20, 643663, doi:10.1016/0004-6981(86)90180-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, Cambridge University Press, 867–952, doi:10.1017/CBO9781107415324.022.

    • Crossref
    • Export Citation
  • Bolin, B., and C. D. Keeling, 1963: Large-scale atmospheric mixing as deduced from the seasonal and meridional variations of carbon dioxide. J. Geophys. Res., 68, 38993920, doi:10.1029/JZ068i013p03899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 53805552, doi:10.1002/jgrd.50171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourgeois, Q., and I. Bey, 2011: Pollution transport efficiency toward the Arctic: Sensitivity to aerosol scavenging and source regions. J. Geophys. Res., 116, D08213, doi:10.1029/2010JD015096.

    • Search Google Scholar
    • Export Citation
  • Browse, J., K. S. Carslaw, S. R. Arnold, K. Pringle, and O. Boucher, 2012: The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol. Atmos. Chem. Phys., 12, 67756798, doi:10.5194/acp-12-6775-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christoudias, T., A. Pozzer, and J. Lelieveld, 2012: Influence of the North Atlantic Oscillation on air pollution transport. Atmos. Chem. Phys., 12, 869877, doi:10.5194/acp-12-869-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cozic, J., S. Mertes, B. Verheggen, D. J. Cziczo, S. J. Gallavardin, S. Walter, U. Baltensperger, and E. Weingartner, 2008: Black carbon enrichment in atmospheric ice particle residuals observed in lower tropospheric mixed phase clouds. J. Geophys. Res., 113, D15209, doi:10.1029/2007JD009266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, doi:10.1175/2011JCLI3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckhardt, S., and Coauthors, 2003: The North Atlantic Oscillation controls air pollution transport to the Arctic. Atmos. Chem. Phys., 3, 17691778, doi:10.5194/acp-3-1769-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckhardt, S., and Coauthors, 2015: Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: A multi-model evaluation using a comprehensive measurement data set. Atmos. Chem. Phys., 15, 94139433, doi:10.5194/acp-15-9413-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eleftheriadis, K., S. Vratolis, and S. Nyeki, 2009: Aerosol black carbon in the European Arctic: Measurements at Zeppelin station, Ny-Ålesund, Svalbard from 1998–2007. Geophys. Res. Lett., 36, L02809, doi:10.1029/2008GL035741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, S.-M., and Coauthors, 2012: Inferring ice formation processes from global-scale black carbon profiles observed in the remote atmosphere and model simulations. J. Geophys. Res., 117, D23205, doi:10.1029/2012JD018126.

    • Search Google Scholar
    • Export Citation
  • Friedman, B., G. Kulkarni, J. Beránek, A. Zelenyuk, J. A. Thornton, and D. J. Cziczo, 2011: Ice nucleation and droplet formation by bare and coated soot particles. J. Geophys. Res., 116, D17203, doi:10.1029/2011JD015999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallagher, M. W., 2002: Measurements and parameterizations of small aerosol deposition velocities to grassland, arable crops, and forest: Influence of surface roughness length on deposition. J. Geophys. Res., 107, 4154, doi:10.1029/2001JD000817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., and L. L. Verzella, 2008: Looking back: An evolving history of Arctic aerosols. Bull. Amer. Meteor. Soc., 89, 299302, doi:10.1175/BAMS-89-3-299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., S. Brattström, S. Sharma, D. E. J. Worthy, and P. Novelli, 2011: The role of scavenging in the seasonal transport of black carbon and sulfate to the Arctic. Geophys. Res. Lett., 38, L16805, doi:10.1029/2011GL048221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., B. J. Hoskins, P. J. Valdes, and C. A. Senior, 1994: Storm tracks in a high-resolution GCM with doubled carbon dioxide. Quart. J. Roy. Meteor. Soc., 120, 12091230, doi:10.1002/qj.49712051905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1999: The macroturbulence of the troposphere. Tellus, 51A, 5970, doi:10.3402/tellusa.v51i1.12306.

  • Huang, L., S. L. Gong, C. Q. Jia, and D. Lavoué, 2010: Importance of deposition processes in simulating the seasonality of the Arctic black carbon aerosol. J. Geophys. Res., 115, D17207, doi:10.1029/2009JD013478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iversen, T., and E. Joranger, 1985: Arctic air pollution and large scale atmospheric flows. Atmos. Environ., 19, 20992108, doi:10.1016/0004-6981(85)90117-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssens-Maenhout, G., and Coauthors, 2015: HTAP_v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys., 15, 11 41111 432, doi:10.5194/acp-15-11411-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiao, C., and M. G. Flanner, 2016: Changing black carbon transport to the Arctic from present day to the end of 21st century. J. Geophys. Res. Atmos., 121, 47344750, doi:10.1002/2015JD023964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klonecki, A., P. Hess, L. Emmons, L. Smith, J. Orlando, and D. Blake, 2003: Seasonal changes in the transport of pollutants into the Arctic troposphere-model study. J. Geophys. Res., 108, 8367, doi:10.1029/2002JD002199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, D., 2001: Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM. J. Geophys. Res., 106, 20 31120 332, doi:10.1029/2001JD900038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, D., and J. Hansen, 2005: Distant origins of Arctic black carbon: A Goddard Institute for Space Studies ModelE experiment. J. Geophys. Res., 110, D04204, doi:10.1029/2004JD005296.

    • Search Google Scholar
    • Export Citation
  • Koch, D., and Coauthors, 2009: Evaluation of black carbon estimations in global aerosol models. Atmos. Chem. Phys., 9, 90019026, doi:10.5194/acp-9-9001-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Law, K. S., and A. Stohl, 2007: Arctic air pollution: Origins and impacts. Science, 315, 15371540, doi:10.1126/science.1137695.

  • Levy, H., M. D. Schwarzkopf, L. Horowitz, V. Ramaswamy, and K. L. Findell, 2008: Strong sensitivity of late 21st century climate to projected changes in short-lived air pollutants. J. Geophys. Res., 113, D06102, doi:10.1029/2007JD009176.

    • Search Google Scholar
    • Export Citation
  • Li, F., P. Ginoux, and V. Ramaswamy, 2008: Distribution, transport, and deposition of mineral dust in the Southern Ocean and Antarctica: Contribution of major sources. J. Geophys. Res., 113, D10207, doi:10.1029/2007JD009190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, M., and Coauthors, 2012: Transport of Asian ozone pollution into surface air over the western United States in spring. J. Geophys. Res., 117, D00V07, doi:10.1029/2011JD016961.

    • Search Google Scholar
    • Export Citation
  • Liu, J., S. Fan, L. W. Horowitz, and H. Levy, 2011: Evaluation of factors controlling long-range transport of black carbon to the Arctic. J. Geophys. Res., 116, D04307, doi:10.1029/2010JD015145.

    • Search Google Scholar
    • Export Citation
  • Liu, X., P.-L. Ma, H. Wang, S. Tilmes, B. Singh, R. C. Easter, S. J. Ghan, and P. J. Rasch, 2016: Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geosci. Model Dev., 9, 505522, doi:10.5194/gmd-9-505-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, P.-L., and Coauthors, 2013: The role of circulation features on black carbon transport into the Arctic in the Community Atmosphere Model version 5 (CAM5). J. Geophys. Res. Atmos., 118, 46574669, doi:10.1002/jgrd.50411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, J. M., 1957: Visual range in the polar regions with particular reference to the Alaskan Arctic. J. Atmos. Terr. Phys. (Special Suppl.), 195211.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., D. G. Vincent, and J. W. Kidson, 1969: Interhemispheric mass exchange from meteorological and trace substance observations. Tellus, 21A, 641647, doi:10.1111/j.2153-3490.1969.tb00471.x.

    • Search Google Scholar
    • Export Citation
  • Oshima, N., M. Koike, Y. Zhang, and Y. Kondo, 2009: Aging of black carbon in outflow from anthropogenic sources using a mixing state resolved model: 2. Aerosol optical properties and cloud condensation nuclei activities. J. Geophys. Res., 114, D18202, doi:10.1029/2008JD011681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulot, F., and Coauthors, 2016: Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: Implications for present and future nitrate optical depth. Atmos. Chem. Phys., 16, 14591477, doi:10.5194/acp-16-1459-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, M. D., A. J. Prenni, S. M. Kreidenweis, P. J. DeMott, A. Matsunaga, Y. B. Lim, and P. J. Ziemann, 2006: Chemical aging and the hydrophobic-to-hydrophilic conversion of carbonaceous aerosol. Geophys. Res. Lett., 33, L24806, doi:10.1029/2006GL027249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinn, P. K., G. Shaw, E. Andrews, E. G. Dutton, T. Ruoho-Airola, and S. L. Gong, 2007: Arctic haze: Current trends and knowledge gaps. Tellus., 59B, 99114, doi:10.1111/j.1600-0889.2006.00236.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulz, M., and Coauthors, 2006: Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos. Chem. Phys., 6, 52255246, doi:10.5194/acpd-6-5095-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarz, J. P., and Coauthors, 2013: Global-scale seasonally resolved black carbon vertical profiles over the Pacific. Geophys. Res. Lett., 40, 55425547, doi:10.1002/2013GL057775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, S., D. Lavoué, H. Cachier, L. A. Barrie, and S. L. Gong, 2004: Long-term trends of the black carbon concentrations in the Canadian Arctic. J. Geophys. Res., 109, D15203, doi:10.1029/2003JD004331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, S., E. Andrews, L. A. Barrie, J. A. Ogren, and D. Lavoué, 2006: Variations and sources of the equivalent black carbon in the high Arctic revealed by long-term observations at Alert and Barrow: 1989–2003. J. Geophys. Res., 111, D14208, doi:10.1029/2005JD006581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, G., 1981: Eddy diffusion transport of Arctic pollution from the mid-latitudes: A preliminary model. Atmos. Environ., 15, 14831490, doi:10.1016/0004-6981(81)90356-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shindell, D., and G. Faluvegi, 2009: Climate response to regional radiative forcing during the twentieth century. Nat. Geosci., 2, 294300, doi:10.1038/ngeo473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shindell, D., and Coauthors, 2008: A multi-model assessment of pollution transport to the Arctic. Atmos. Chem. Phys., 8, 53535372, doi:10.5194/acp-8-5353-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singarayer, J. S., J. L. Bamber, and P. J. Valdes, 2006: Twenty-first-century climate impacts from a declining Arctic sea ice cover. J. Climate, 19, 11091125, doi:10.1175/JCLI3649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., 2006: Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys. Res., 111, D11306, doi:10.1029/2005JD006888.

  • Stohl, A., Z. Klimont, S. Eckhardt, K. Kupiainen, V. P. Shevchenko, V. M. Kopeikin, and N. Novigatsky, 2013: Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions. Atmos. Chem. Phys., 13, 88338855, doi:10.5194/acp-13-8833-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Streets, D. G., Y. Wu, and M. Chin, 2006: Two-decadal aerosol trends as a likely explanation of the global dimming/brightening transition. Geophys. Res. Lett., 33, L15806, doi:10.1029/2006GL026471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and Coauthors, 2013: Sensitivity of remote aerosol distributions to representation of cloud–aerosol interactions in a global climate model. Geosci. Model Dev., 6, 765782, doi:10.5194/gmd-6-765-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., and Coauthors, 2014: Global budget and radiative forcing of black carbon aerosol: Constraints from pole-to-pole (HIPPO) observations across the Pacific. J. Geophys. Res., 119, 195206, doi:10.1002/2013JD020824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiedinmyer, C., S. K. Akagi, R. J. Yokelson, L. K. Emmons, J. A. Al-Saadi, J. J. Orlando, and J. Soja, 2011: The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geosci. Model Dev., 4, 625641, doi:10.5194/gmd-4-625-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wofsy, S. C., and Coauthors, 2011: HIAPER Pole-to-Pole Observations (HIPPO): Fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols. Philos. Trans. Roy. Soc. London, 369A, 20732086, doi:10.1098/rsta.2010.0313.

    • Search Google Scholar
    • Export Citation
  • Wofsy, S. C., and Coauthors, 2012: HIPPO Merged 10-second Meteorology, Atmospheric Chemistry, and Aerosol Data (release 20121129). Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, doi:10.3334/CDIAC/hippo_010.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1969 750 72
PDF Downloads 479 80 7