Attributing Causes of 2015 Record Minimum Sea-Ice Extent in the Sea of Okhotsk

Seungmok Paik Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea

Search for other papers by Seungmok Paik in
Current site
Google Scholar
PubMed
Close
,
Seung-Ki Min Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea

Search for other papers by Seung-Ki Min in
Current site
Google Scholar
PubMed
Close
,
Yeon-Hee Kim Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea

Search for other papers by Yeon-Hee Kim in
Current site
Google Scholar
PubMed
Close
,
Baek-Min Kim Korea Polar Research Institute, Incheon, South Korea

Search for other papers by Baek-Min Kim in
Current site
Google Scholar
PubMed
Close
,
Hideo Shiogama National Institute for Environmental Studies, Tsukuba, Japan

Search for other papers by Hideo Shiogama in
Current site
Google Scholar
PubMed
Close
, and
Joonghyeok Heo University of Michigan, Ann Arbor, Michigan

Search for other papers by Joonghyeok Heo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In 2015, the sea ice extent (SIE) over the Sea of Okhotsk (Okhotsk SIE) hit a record low since 1979 during February–March, the period when the sea ice extent generally reaches its annual maximum. To quantify the role of anthropogenic influences on the changes observed in Okhotsk SIE, this study employed a fraction of attributable risk (FAR) analysis to compare the probability of occurrence of extreme Okhotsk SIE events and long-term SIE trends using phase 5 of the Coupled Model Intercomparison Project (CMIP5) multimodel simulations performed with and without anthropogenic forcing. It was found that because of anthropogenic influence, both the probability of extreme low Okhotsk SIEs that exceed the 2015 event and the observed long-term trends during 1979–2015 have increased by more than 4 times (FAR = 0.76 to 1). In addition, it is suggested that a strong negative phase of the North Pacific Oscillation (NPO) during midwinter (January–February) 2015 also contributed to the 2015 extreme SIE event. An analysis based on multiple linear regression was conducted to quantify relative contributions of the external forcing (anthropogenic plus natural) and the NPO (internal variability) to the observed SIE changes. About 56.0% and 24.7% of the 2015 SIE anomaly was estimated to be attributable to the external forcing and the strong negative NPO influence, respectively. The external forcing was also found to explain about 86.1% of the observed long-term SIE trend. Further, projections from the CMIP5 models indicate that a sea ice–free condition may occur in the Sea of Okhotsk by the late twenty-first century in some models.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0587.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Seung-Ki Min, skmin@postech.ac.kr

Abstract

In 2015, the sea ice extent (SIE) over the Sea of Okhotsk (Okhotsk SIE) hit a record low since 1979 during February–March, the period when the sea ice extent generally reaches its annual maximum. To quantify the role of anthropogenic influences on the changes observed in Okhotsk SIE, this study employed a fraction of attributable risk (FAR) analysis to compare the probability of occurrence of extreme Okhotsk SIE events and long-term SIE trends using phase 5 of the Coupled Model Intercomparison Project (CMIP5) multimodel simulations performed with and without anthropogenic forcing. It was found that because of anthropogenic influence, both the probability of extreme low Okhotsk SIEs that exceed the 2015 event and the observed long-term trends during 1979–2015 have increased by more than 4 times (FAR = 0.76 to 1). In addition, it is suggested that a strong negative phase of the North Pacific Oscillation (NPO) during midwinter (January–February) 2015 also contributed to the 2015 extreme SIE event. An analysis based on multiple linear regression was conducted to quantify relative contributions of the external forcing (anthropogenic plus natural) and the NPO (internal variability) to the observed SIE changes. About 56.0% and 24.7% of the 2015 SIE anomaly was estimated to be attributable to the external forcing and the strong negative NPO influence, respectively. The external forcing was also found to explain about 86.1% of the observed long-term SIE trend. Further, projections from the CMIP5 models indicate that a sea ice–free condition may occur in the Sea of Okhotsk by the late twenty-first century in some models.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0587.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Seung-Ki Min, skmin@postech.ac.kr

Supplementary Materials

    • Supplemental Materials (DOCX 29.46 KB)
Save
  • Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952.

  • Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally, 1996 (updated yearly): Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, version 1. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0051.html.]

  • Christidis, N., P. A. Stott, and A. Ciavarella, 2014: The effect of anthropogenic climate change on the cold spring of 2013 in the United Kingdom [in “Explaining Extreme Events of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95, S79S82.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and Coauthors, 2008: North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett., 35, L08607, doi:10.1029/2007GL032838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, J. Glascoe, and M. Sato, 1999: GISS analysis of surface temperature change. J. Geophys. Res., 104, 30 99731 022, doi:10.1029/1999JD900835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663–745.

  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232, doi:10.1007/s00382-003-0332-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, M., K. Yamazaki, H. Nakamura, and K. Takeuchi, 1999: Dynamic and thermodynamic characteristics of atmospheric response to anomalous sea-ice extent in the Sea of Okhotsk. J. Climate, 12, 33473358, doi:10.1175/1520-0442(1999)012<3347:DATCOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimura, N., and M. Wakatsuchi, 2001: Mechanisms for the variation of sea ice extent in the Northern Hemisphere. J. Geophys. Res., 106, 31 31931 331, doi:10.1029/2000JC000739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linkin, M. E., and S. Nigam, 2008: The North Pacific Oscillation–west Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 19791997, doi:10.1175/2007JCLI2048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, W. N., J. Stroeve, and F. Fetterer, 2007: Whither Arctic sea ice? A clear signal of decline regionally, seasonally and extending beyond the satellite record. Ann. Glaciol., 46, 428434, doi:10.3189/172756407782871170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesquita, M. D. S., K. I. Hodges, D. E. Atkinson, and J. Bader, 2011: Sea-ice anomalies in the Sea of Okhotsk and the relationship with storm tracks in the Northern Hemisphere during winter. Tellus, 63A, 312323, doi:10.1111/j.1600-0870.2010.00483.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. W. Zwiers, and T. Agnew, 2008: Human influence on Arctic sea ice detectable from early 1990s onwards. Geophys. Res. Lett., 35, L21701, doi:10.1029/2008GL035725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanowatari, T., K. I. Ohshima, and M. Wakatsuchi, 2007: Warming and oxygen decrease of intermediate water in the northwestern North Pacific, originating from the Sea of Okhotsk, 1955–2004. Geophys. Res. Lett., 34, L04602, doi:10.1029/2006GL028243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogi, M., Y. Tachibana, and K. Yamazaki, 2004: The connectivity of the winter North Atlantic Oscillation (NAO) and the summer Okhotsk high. J. Meteor. Soc. Japan, 82, 905913, doi:10.2151/jmsj.2004.905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2007: Future regional Arctic sea ice declines. Geophys. Res. Lett., 34, L17705, doi:10.1029/2007GL030808.

  • Parkinson, C. L., 1990: The impact of the Siberian high and Aleutian low on the sea-ice cover of the Sea of Okhotsk. Ann. Glaciol., 14, 226229, doi:10.1017/S0260305500008636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1981: The North Pacific Oscillation. J. Climatol., 1, 3957, doi:10.1002/joc.3370010106.

  • Sasaki, Y. N., Y. Katagiri, S. Minobe, and I. G. Rigor, 2007: Autumn atmospheric preconditioning for interannual variability of wintertime sea-ice in the Okhotsk Sea. J. Oceanogr., 63, 255265, doi:10.1007/s10872-007-0026-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simizu, D., K. I. Ohshima, J. Ono, Y. Fukamachi, and G. Mizuta, 2014: What drives the southward drift of sea ice in the Sea of Okhotsk? Prog. Oceanogr., 126, 3343, doi:10.1016/j.pocean.2014.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., D. A. Stone, and M. R. Allen, 2004: Human contribution to the European heatwave of 2003. Nature, 432, 610614, doi:10.1038/nature03089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, doi:10.1029/2007GL029703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tachibana, Y., M. Honda, and K. Takeuchi, 1996: The abrupt decrease of the sea-ice over the southern part of the Sea of Okhotsk in 1989 and its relation to the recent weakening of the Aleutian low. J. Meteor. Soc. Japan, 74, 579584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., and J. E. Overland, 2009: A sea ice free summer Arctic within 30 years? Geophys. Res. Lett., 36, L07502, doi:10.1029/2009GL037820.

  • Wang, M., and J. E. Overland, 2012: A sea ice free summer Arctic within 30 years: An update from CMIP5 models. Geophys. Res. Lett., 39, L18501, doi:10.1029/2012GL052868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. R. Knutson, 2013: The role of global climate change in the extreme low summer Arctic sea ice extent in 2012 [in “Explaining Extreme Events of 2012 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 94, S23S26.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1161 419 23
PDF Downloads 529 36 6