Improvements in Simulating the Relationship between ENSO and East Asian Summer Rainfall in the CMIP5 Models

Yuanhai Fu Climate Change Research Center, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yuanhai Fu in
Current site
Google Scholar
PubMed
Close
and
Riyu Lu National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Riyu Lu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

There is a significant relationship between the preceding winter El Niño–Southern Oscillation (ENSO) and the subsequent East Asian summer rainfall (EASR), and this relationship is helpful for seasonal forecasting in East Asia. This study investigated the relationship between the preceding winter ENSO and EASR in the phase 5 of the Coupled Model Intercomparison Project (CMIP5) models and compared the results with those from the CMIP3 models. In general, the CMIP5 models capture the ENSO–EASR relationship more realistically than the CMIP3 models. For instance, approximately two-thirds of the CMIP5 models capture the ENSO–EASR relationship, whereas fewer than one-third of the CMIP3 models capture the relationship. Further investigation suggests that the improvement could be attributed to simulating the physical processes of ENSO’s impact on the EASR more realistically in the CMIP5 models, particularly the effect of ENSO on tropical Indian Ocean SST and the effect of Indian Ocean SST anomalies on the atmospheric convection over the Philippine Sea. However, there is large diversity in the ENSO–EASR relationship in the CMIP5 models, and most of the models underestimate the relationship. This underestimation comes from the underestimation of the physical processes, particularly from the underestimated impact of the atmospheric convection over the Philippine Sea on the EASR. The CMIP5 models that capture the ENSO–EASR relationship well (badly) also show high (low) skill in representing the physical processes.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Yuanhai Fu, fugreen1981@mail.iap.ac.cn

Abstract

There is a significant relationship between the preceding winter El Niño–Southern Oscillation (ENSO) and the subsequent East Asian summer rainfall (EASR), and this relationship is helpful for seasonal forecasting in East Asia. This study investigated the relationship between the preceding winter ENSO and EASR in the phase 5 of the Coupled Model Intercomparison Project (CMIP5) models and compared the results with those from the CMIP3 models. In general, the CMIP5 models capture the ENSO–EASR relationship more realistically than the CMIP3 models. For instance, approximately two-thirds of the CMIP5 models capture the ENSO–EASR relationship, whereas fewer than one-third of the CMIP3 models capture the relationship. Further investigation suggests that the improvement could be attributed to simulating the physical processes of ENSO’s impact on the EASR more realistically in the CMIP5 models, particularly the effect of ENSO on tropical Indian Ocean SST and the effect of Indian Ocean SST anomalies on the atmospheric convection over the Philippine Sea. However, there is large diversity in the ENSO–EASR relationship in the CMIP5 models, and most of the models underestimate the relationship. This underestimation comes from the underestimation of the physical processes, particularly from the underestimated impact of the atmospheric convection over the Philippine Sea on the EASR. The CMIP5 models that capture the ENSO–EASR relationship well (badly) also show high (low) skill in representing the physical processes.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Yuanhai Fu, fugreen1981@mail.iap.ac.cn
Save
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, doi:10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J.-Y. Tu, and J.-Y. Yu, 2003: Interannual variability of the western North Pacific summer monsoon: Differences between ENSO and non-ENSO years. J. Climate, 16, 22752287, doi:10.1175/2761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, H., R. Greatbatch, W. Park, M. Latif, V. Semenov, and X. Sun, 2014: The variability of the East Asian summer monsoon and its relationship to ENSO in a partially coupled climate model. Climate Dyn., 42, 367379, doi:10.1007/s00382-012-1642-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Y., R. Lu, H. Wang, and X. Yang, 2013: Impact of overestimated ENSO variability in the relationship between ENSO and East Asian summer rainfall. J. Geophys. Res. Atmos., 118, 62006211, doi:10.1002/jgrd.50482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., H. Wang, and D. Jiang, 2015: An intercomparison of CMIP5 and CMIP3 models for interannual variability of summer precipitation in Pan-Asian monsoon region. Int. J. Climatol., 35, 37703780, doi:10.1002/joc.4245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2015: Improvement of ENSO simulation based on intermodel diversity. J. Climate, 28, 9981015, doi:10.1175/JCLI-D-14-00376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G., K. Hu, and S.-P. Xie, 2010: Strengthening of tropical Indian Ocean teleconnection to the northwest Pacific since the mid-1970s: An atmospheric GCM study. J. Climate, 23, 52945304, doi:10.1175/2010JCLI3577.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., and Y. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 2132, doi:10.1007/BF02656915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, W., G. Huang, K. Hu, R. Wu, H. Gong, X. Chen, and W. Tao, 2017: Diverse relationship between ENSO and the northwest Pacific summer climate among CMIP5 models: Dependence on the ENSO decay pace. J. Climate, 30, 109127, doi:10.1175/JCLI-D-16-0365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 20092030, doi:10.1256/qj.05.204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., R. Lu, and B. Dong, 2012: Predictability of the western North Pacific summer climate demonstrated by the coupled models of ENSEMBLES. Climate Dyn., 39, 329346, doi:10.1007/s00382-011-1274-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., R. Lu, and B. Dong, 2014: Predictability of the western North Pacific summer climate associated with different ENSO phases by ENSEMBLES multi-model seasonal forecasts. Climate Dyn., 43, 18291845, doi:10.1007/s00382-013-2010-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. Q., S. H. , B. Han, and Y. H. Gao, 2015: Connections between the South Asian summer monsoon and the tropical sea surface temperature in CMIP5. J. Meteor. Res., 29, 106118, doi:10.1007/s13351-014-4031-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., J. Lu, G. Huang, and K. Hu, 2008: Tropical Indian Ocean basin warming and East Asian summer monsoon: A multiple AGCM study. J. Climate, 21, 60806088, doi:10.1175/2008JCLI2433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and W. Zhou, 2012: Quasi-4-yr coupling between El Niño–Southern Oscillation and water vapor transport over East Asia–WNP. J. Climate, 25, 58795891, doi:10.1175/JCLI-D-11-00433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z., R. Lu, and W. Zhou, 2010: Change in early-summer meridional teleconnection over the western North Pacific and East Asia around the late 1970s. Int. J. Climatol., 30, 21952204, doi:10.1002/joc.2038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., 2001: Atmospheric circulations and sea surface temperatures related to the convection over the western Pacific warm pool on the interannual scale. Adv. Atmos. Sci., 18, 270282, doi:10.1007/s00376-001-0019-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., 2004: Association among the components of the East Asian summer monsoon system in the meridional direction. J. Meteor. Soc. Japan, 82, 155165, doi:10.2151/jmsj.82.155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., and Y. Fu, 2010: Intensification of East Asian summer rainfall interannual variability in the twenty-first century simulated by 12 CMIP3 coupled models. J. Climate, 23, 33163331, doi:10.1175/2009JCLI3130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Nitta, T., 1986: Long-term variations of cloud amount in the western Pacific region. J. Meteor. Soc. Japan, 64, 373390.

  • North, G. R., T. L. Bell, and R. F. Cahalan, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., and T. Zhou, 2014a: The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air–sea coupling improve the simulations? J. Climate, 27, 87618777, doi:10.1175/JCLI-D-14-00396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., and T. Zhou, 2014b: Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean–western Pacific anticyclone teleconnection. J. Climate, 27, 16791697, doi:10.1175/JCLI-D-13-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 27112744, doi:10.1007/s00382-012-1607-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X., R. J. Greatbatch, W. Park, and M. Latif, 2010: Two major modes of variability of the East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 829841, doi:10.1002/qj.635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, doi:10.1029/2005GL022734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., B. P. Kirtman, and K. Pegion, 2006: Local air–sea relationship in observations and model simulations. J. Climate, 19, 49144932, doi:10.1175/JCLI3904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, doi:10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. M. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, doi:10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., S. Li, J. Lu, and R. Wu, 2012: Comparison of the northwestern Pacific summer climate simulated by AMIP II AGCMs. J. Climate, 25, 60366056, doi:10.1175/JCLI-D-11-00322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., and Coauthors, 2014: Chinese contribution to CMIP5: An overview of five Chinese models’ performances. J. Meteor. Res., 28, 481509, doi:10.1007/s13351-014-4001-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., H. Wang, W. Zhou, and J. Ma, 2011: Recent changes in the summer precipitation pattern in east China and the background circulation. Climate Dyn., 36, 14631473, doi:10.1007/s00382-010-0852-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 778 519 24
PDF Downloads 266 82 9