Influences of Temperature and Precipitation on Historical and Future Snowpack Variability over the Northern Hemisphere in the Second Generation Canadian Earth System Model

Reinel Sospedra-Alfonso Canadian Centre for Climate Modelling and Analysis, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Reinel Sospedra-Alfonso in
Current site
Google Scholar
PubMed
Close
and
William J. Merryfield Canadian Centre for Climate Modelling and Analysis, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by William J. Merryfield in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the changing roles of temperature and precipitation on snowpack variability in the Northern Hemisphere for Second Generation Canadian Earth System Model (CanESM2) historical (1850–2005) and future (2006–2100) climate simulations. The strength of the linear relationship between monthly snow water equivalent (SWE) in January–April and precipitation P or temperature T predictors is found to be a sigmoidal function of the mean temperature over the snow season up to the indicated month. For P predictors, the strength of this relationship increases for colder snow seasons, whereas for T predictors it increases for warmer snow seasons. These behaviors are largely explained by the daily temperature percentiles below freezing during the snow accumulation period. It is found that there is a threshold temperature (−5±1°C, depending on month in the snow season and largely independent of emission scenario), representing a crossover point below which snow seasons are sufficiently cold that P is the primary driver of snowpack amount and above which T is the primary driver. This isotherm allows one to delineate the snow-climate regions and elevation zones in which snow-cover amounts are more vulnerable to a warming climate. As climate projections indicate that seasonal isotherms shift northward and toward higher elevations, regions where snowpack amount is mainly driven by precipitation recede, whereas temperature-sensitive snow-covered areas extend to higher latitudes and/or elevations, with resulting impacts on ecosystems and society.

Denotes content that is immediately available upon publication as open access.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0612.s1.

Corresponding author: Reinel Sospedra-Alfonso, sospedra@uvic.ca

Abstract

This study examines the changing roles of temperature and precipitation on snowpack variability in the Northern Hemisphere for Second Generation Canadian Earth System Model (CanESM2) historical (1850–2005) and future (2006–2100) climate simulations. The strength of the linear relationship between monthly snow water equivalent (SWE) in January–April and precipitation P or temperature T predictors is found to be a sigmoidal function of the mean temperature over the snow season up to the indicated month. For P predictors, the strength of this relationship increases for colder snow seasons, whereas for T predictors it increases for warmer snow seasons. These behaviors are largely explained by the daily temperature percentiles below freezing during the snow accumulation period. It is found that there is a threshold temperature (−5±1°C, depending on month in the snow season and largely independent of emission scenario), representing a crossover point below which snow seasons are sufficiently cold that P is the primary driver of snowpack amount and above which T is the primary driver. This isotherm allows one to delineate the snow-climate regions and elevation zones in which snow-cover amounts are more vulnerable to a warming climate. As climate projections indicate that seasonal isotherms shift northward and toward higher elevations, regions where snowpack amount is mainly driven by precipitation recede, whereas temperature-sensitive snow-covered areas extend to higher latitudes and/or elevations, with resulting impacts on ecosystems and society.

Denotes content that is immediately available upon publication as open access.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0612.s1.

Corresponding author: Reinel Sospedra-Alfonso, sospedra@uvic.ca

Supplementary Materials

    • Supplemental Materials (PDF 534.17 KB)
Save
  • Anderson, E. A., 1973: National Weather Service river forecast system snow accumulation and ablation model. NOAA Tech. Memo. NWS HYDRO-17 2490, 217 pp.

  • Arora, V. K., and G. J. Boer, 2010: Uncertainties in the 20th century carbon budget associated with land use change. Global Change Biol., 16, 33273348, doi:10.1111/j.1365-2486.2010.02202.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2009: The effect of terrestrial photosynthesis down-regulation on the twentieth-century carbon budget simulated with the CCCma Earth System Model. J. Climate, 22, 60666088, doi:10.1175/2009JCLI3037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi:10.1029/2010GL046270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beniston, M., 2012: Is snow in the Alps receding or disappearing? Wiley Interdiscip. Rev.: Climate Change, 3, 349358, doi:10.1002/wcc.179.

    • Search Google Scholar
    • Export Citation
  • Beniston, M., F. Keller, and S. Goyette, 2003a: Snow pack in the Swiss Alps under changing climatic conditions: An empirical approach for climate impacts studies. Theor. Appl. Climatol., 74, 1931, doi:10.1007/s00704-002-0709-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beniston, M., F. Keller, B. Koffi, and S. Goyette, 2003b: Estimates of snow accumulation and volume in the Swiss Alps under changing climatic conditions. Theor. Appl. Climatol., 76, 125140, doi:10.1007/s00704-003-0016-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. D., and P. W. Mote, 2009: The response of Northern Hemisphere snow cover to a changing climate. J. Climate, 22, 21242145, doi:10.1175/2008JCLI2665.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. D., and C. Derksen, 2013: Is Eurasian October snow cover extent increasing? Environ. Res. Lett., 8, 024006, doi:10.1088/1748-9326/8/2/024006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D., 1996: Interannual climate variability and snowpack in the western United States. J. Climate, 9, 928948, doi:10.1175/1520-0442(1996)009<0928:ICVASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dozier, J., and Coauthors, 1989: Prospects and Concerns for Satellite Remote Sensing of Snow and Ice. National Academies Press, 58 pp.

  • Flato, G. M., and W. D. I. Hibler, 1992: Modelling pack ice as a cavitating fluid. J. Phys. Oceanogr., 22, 626651, doi:10.1175/1520-0485(1992)022<0626:MPIAAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., P. W. Mote, M. P. Clark, and D. P. Lettenmaier, 2005: Effects of temperature and precipitation variability on snowpack trends in the western United States. J. Climate, 18, 45454561, doi:10.1175/JCLI3538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hantel, M., and L.-M. Wielke, 2007: Sensitivity of Alpine snow cover to European temperature. Int. J. Climatol., 27, 12651275, doi:10.1002/joc.1472.

  • Hantel, M., M. Ehrendorfer, and A. Haslinger, 2000: Climate sensitivity of snow cover duration in Austria. Int. J. Climatol., 20, 615640, doi:10.1002/(SICI)1097-0088(200005)20:6<615::AID-JOC489>3.0.CO;2-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Climate Change 2014: Synthesis Report. Cambridge University Press, 151 pp.

  • Jakobson, E., T. Vihma, T. Palo, L. Jakobson, H. Keernik, and J. Jaagus, 2012: Validation of atmospheric reanalyses over the central Arctic Ocean. Geophys. Res. Lett., 39, L10802, doi:10.1029/2012GL051591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knowles, N., M. D. Dettinger, and D. R. Cayan, 2006: Trends in snowfall versus rainfall in the western United States. J. Climate, 19, 45454559, doi:10.1175/JCLI3850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, doi:10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and C. A. Hiemstra, 2011: The changing cryosphere: Pan-arctic snow trends (1979–2009). J. Climate, 24, 56915712, doi:10.1175/JCLI-D-11-00081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López-Moreno, J. I., 2005: Recent variations of snowpack depth in the central Spanish Pyrenees. Arct. Antarct. Alp. Res., 37, 253260, doi:10.1657/1523-0430(2005)037[0253:RVOSDI]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, L., D. Qin, L. Bian, C. Xiao, and Y. Luo, 2010: Sensitivity of the number of snow cover days to surface air temperature over the Qinghai-Tibetan Plateau. Adv. Climate Change Res., 1, 76–83.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., W.-S. Lee, G. J. Boer, V. V. Kharin, J. F. Scinocca, G. M. Flato, R. S. Ajayamohan, and J. C. Fyfe, 2013: The Canadian seasonal to interannual prediction system. Part I: Models and initialization. Mon. Wea. Rev., 141, 29102945, doi:10.1175/MWR-D-12-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morán-Tejeda, E., J. I. López-Moreno, and M. Beniston, 2013: The changing roles of temperature and precipitation on snowpack variability in Switzerland as a function of altitude. Geophys. Res Lett., 40, 21312136, doi:10.1002/grl.50463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., 2006: Climate-driven variability and trends in mountain snowpack in western North America. J. Climate, 19, 62096220, doi:10.1175/JCLI3971.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 24172424, doi:10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolin, A., and C. Daly, 2006: Mapping “at risk” snow in the Pacific Northwest. J. Hydrometeor., 7, 11641171, doi:10.1175/JHM543.1.

  • Pomeroy, J. W., and D. M. Gray, 1994: Sensitivity of snow relocation and sublimation to climate and surface vegetation. Proc. Yokohama Symposia J2 and J5, July 1993, Yokohama, Japan, IAHS, 213–225.

  • Qin, D., S. Liu, and P. Li, 2006: Snow cover distribution, variability and response to climate change in western China. J. Climate, 19, 18201833, doi:10.1175/JCLI3694.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Räisänen, J., 2008: Warmer climate: Less or more snow? Climate Dyn., 30, 307319, doi:10.1007/s00382-007-0289-y.

  • Rapaić, M., R. Brown, M. Markovic, and D. Chaumont, 2015: An evaluation of temperature and precipitation surface-based and reanalysis datasets for the Canadian Arctic, 1950–2010. Atmos.–Ocean, 53, 283303, doi:10.1080/07055900.2015.1045825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scalzitti, J., C. Strong, and A. Kochanski, 2016: Climate change impact on the roles of temperature and precipitation in western U.S. snowpack variability. Geophys. Res. Lett., 43, 53615369, doi:10.1002/2016GL068798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, and J. Stroeve, 2012: Recent changes in tropospheric water vapor over the Arctic as assessed from radiosondes and atmospheric reanalyses. J. Geophys. Res., 117, D10104, doi:10.1029/2011JD017421.

    • Search Google Scholar
    • Export Citation
  • Sicart, J. E., J. W. Pomeroy, R. L. H. Essery, and D. Bewley, 2006: Incoming longwave radiation to melting snow: Observations, sensitivity and estimation in northern environments. Hydrol. Processes, 20, 36973708, doi:10.1002/hyp.6383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sospedra-Alfonso, R., J. R. Melton, and W. J. Merryfield, 2015: Effects of temperature and precipitation on snowpack variability in the central Rocky Mountains as a function of elevation. Geophys. Res. Lett., 42, 44294438, doi:10.1002/2015GL063898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sospedra-Alfonso, R., L. Mudryk, W. J. Merryfield, and C. Derksen, 2016: Representation of snow in the Canadian seasonal to interannual prediction system: Part I. Initialization. J. Hydrometeor., 17, 14671488, doi:10.1175/JHM-D-14-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stieglitz, M., A. Ducharne, R. Koster, and M. Suarez, 2001: The impact of detailed snow physics on the simulation of snow cover and subsurface thermodynamics at continental scales. J. Hydrometeor., 2, 228242, doi:10.1175/1525-7541(2001)002<0228:TIODSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takala, M., K. Luojus, J. Pulliainen, C. Derksen, J. Lemmetyinen, J.-P. Karna, J. Koskinen, and B. Bojkov, 2011: Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens. Environ., 115, 35173529, doi:10.1016/j.rse.2011.08.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., 2000: The Canadian Land Surface Scheme (CLASS): Its history and future. Atmos.–Ocean, 38, 113, doi:10.1080/07055900.2000.9649637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Salzen, K., and Coauthors, 2013: The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4). Part I: Representation of physical processes. Atmos.–Ocean, 51, 104125, doi:10.1080/07055900.2012.755610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielke, L.-M., L. H. Aimberger, and M. Hantel, 2004: Snow cover duration in Switzerland compared to Austria. Meteor. Z., 13, 1317, doi:10.1127/0941-2948/2004/0013-0013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zahariev, K., J. R. Christian, and K. L. Denman, 2008: Preindustrial, historical, and fertilization simulations using a global ocean carbon model with new parameterizations of iron limitation, calcification, and fixation. Prog. Oceanogr., 77, 56–82, doi:10.1016/j.pocean.2008.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., A. Kumar, and W. Wang, 2012: Influence of changes in observations on precipitation: A case study for the Climate Forecast System Reanalysis (CFSR). J. Geophys. Res., 117, D08105, doi:10.1029/2011JD017347.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1668 1125 27
PDF Downloads 483 84 10