Sensitivity of Attribution of Anthropogenic Near-Surface Warming to Observational Uncertainty

Gareth S. Jones Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Gareth S. Jones in
Current site
Google Scholar
PubMed
Close
and
John J. Kennedy Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by John J. Kennedy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of including comprehensive estimates of observational uncertainties on a detection and attribution analysis of twentieth-century near-surface temperature variations is investigated. The error model of HadCRUT4, a dataset of land near-surface air temperatures and sea surface temperatures, provides estimates of measurement, sampling, and bias adjustment uncertainties. These uncertainties are incorporated into an optimal detection analysis that regresses simulated large-scale temporal and spatial variations in near-surface temperatures, driven by well-mixed greenhouse gas variations and other anthropogenic and natural factors, against observed changes. The inclusion of bias adjustment uncertainties increases the variance of the regression scaling factors and the range of attributed warming from well-mixed greenhouse gases by less than 20%. Including estimates of measurement and sampling errors has a much smaller impact on the results. The range of attributable greenhouse gas warming is larger across analyses exploring dataset structural uncertainty. The impact of observational uncertainties on the detection analysis is found to be small compared to other sources of uncertainty, such as model variability and methodological choices, but it cannot be ruled out that on different spatial and temporal scales this source of uncertainty may be more important. The results support previous conclusions that there is a dominant anthropogenic greenhouse gas influence on twentieth-century near-surface temperature increases.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gareth S. Jones, gareth.s.jones@metoffice.gov.uk

Abstract

The impact of including comprehensive estimates of observational uncertainties on a detection and attribution analysis of twentieth-century near-surface temperature variations is investigated. The error model of HadCRUT4, a dataset of land near-surface air temperatures and sea surface temperatures, provides estimates of measurement, sampling, and bias adjustment uncertainties. These uncertainties are incorporated into an optimal detection analysis that regresses simulated large-scale temporal and spatial variations in near-surface temperatures, driven by well-mixed greenhouse gas variations and other anthropogenic and natural factors, against observed changes. The inclusion of bias adjustment uncertainties increases the variance of the regression scaling factors and the range of attributed warming from well-mixed greenhouse gases by less than 20%. Including estimates of measurement and sampling errors has a much smaller impact on the results. The range of attributable greenhouse gas warming is larger across analyses exploring dataset structural uncertainty. The impact of observational uncertainties on the detection analysis is found to be small compared to other sources of uncertainty, such as model variability and methodological choices, but it cannot be ruled out that on different spatial and temporal scales this source of uncertainty may be more important. The results support previous conclusions that there is a dominant anthropogenic greenhouse gas influence on twentieth-century near-surface temperature increases.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gareth S. Jones, gareth.s.jones@metoffice.gov.uk
Save
  • Allen, M. R., and S. F. B. Tett, 1999: Checking for model consistency in optimal fingerprinting. Climate Dyn., 15, 419434, doi:10.1007/s003820050291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and P. A. Stott, 2003: Estimating signal amplitudes in optimal fingerprinting, part I: Theory. Climate Dyn., 21, 477491, doi:10.1007/s00382-003-0313-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and Coauthors, 2006: Quantifying anthropogenic influence on recent near-surface temperature change. Surv. Geophys., 27, 491544, doi:10.1007/s10712-006-9011-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T., and Coauthors, 2005: Detecting and attributing external influences on the climate system: A review of recent advances. J. Climate, 18, 12911314, doi:10.1175/JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952.

    • Search Google Scholar
    • Export Citation
  • Braganza, K., D. J. Karoly, A. C. Hirst, P. Stott, R. J. Stouffer, and S. F. B. Tett, 2004: Simple indices of global climate variability and change. Part II: Attribution of climate change during the twentieth century. Climate Dyn., 22, 823838, doi:10.1007/s00382-004-0413-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brohan, P., J. J. Kennedy, I. Haris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659–740.

  • Cowtan, K., and R. G. Way, 2014: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc., 140, 19351944, doi:10.1002/qj.2297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cowtan, K., and Coauthors, 2015: Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures. Geophys. Res. Lett., 42, 65266534, doi:10.1002/2015GL064888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., F. W. Zwiers, A. J. Weaver, G. C. Hegerl, M. R. Allen, and P. A. Stott, 2002: Detecting anthropogenic influence with a multi-model ensemble. Geophys. Res. Lett., 29, 1970, doi:10.1029/2002GL015836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., V. K. Arora, D. Matthews, and M. R. Allen, 2013: Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J. Climate, 26, 68446858, doi:10.1175/JCLI-D-12-00476.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannart, A., A. Ribes, and P. Naveau, 2014: Optimal fingerprinting under multiple sources of uncertainty. Geophys. Res. Lett., 41, 12611268, doi:10.1002/2013GL058653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Hartmann, D. L., and Coauthors, 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–254.

  • Hasselmann, K., 1997: Multi-pattern fingerprint method for detection and attribution of climate change. Climate Dyn., 13, 601612, doi:10.1007/s003820050185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and F. Zwiers, 2011: Use of models in detection and attribution of climate change. Wiley Interdiscip. Rev.: Climate Change, 2, 570591, doi:10.1002/wcc.121.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., K. Hasselmann, U. Cubasch, J. F. B. Mitchell, E. Roeckner, R. Voss, and J. Wizjewitz, 1997: Multi-fingerprint detection and attribution analysis of greenhouse gas, greenhouse gas-plus-aerosol and solar forced climate change. Climate Dyn., 13, 613634, doi:10.1007/s003820050186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., P. A. Stott, M. R. Allen, J. F. B. Mitchell, S. F. B. Tett, and U. Cubasch, 2000: Optimal detection and attribution of climate change: Sensitivity of results to climate model differences. Climate Dyn., 16, 737754, doi:10.1007/s003820000071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., P. D. Jones, and T. P. Barnett, 2001: Effect of observational sampling error on the detection of anthropogenic climate change. J. Climate, 14, 198207, doi:10.1175/1520-0442(2001)013<0198:EOOSEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663–745.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., F. Zwiers, and C. Tebaldi, 2011: Patterns of change: Whose fingerprint is seen in global warming? Environ. Res. Lett., 6, 044025, doi:10.1088/1748-9326/6/4/044025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntingford, C., P. A. Stott, M. R. Allen, and F. H. Lambert, 2006: Incorporating model uncertainty into attribution of observed temperature change. Geophys. Res. Lett., 33, L05710, doi:10.1029/2005GL024831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection. Int. J. Climatol., 25, 865879, doi:10.1002/joc.1169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, G. S., and P. A. Stott, 2011: Sensitivity of the attribution of near surface temperature warming to the choice of observational dataset. Geophys. Res. Lett., 38, L21702, doi:10.1029/2011GL049324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, G. S., P. A. Stott, and N. Christidis, 2013: Attribution of observed historical near-surface temperature variations to anthropogenic and natural causes using CMIP5 simulations. J. Geophys. Res. Atmos., 118, 40014024, doi:10.1002/jgrd.50239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, G. S., P. A. Stott, and J. F. B. Mitchell, 2016: Uncertainties in the attribution of greenhouse gas warming and implications for climate prediction. J. Geophys. Res. Atmos., 121, 69696992, doi:10.1002/2015JD024337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., 2016: The reliability of global and hemispheric surface temperature records. Adv. Atmos. Sci., 33, 269282, doi:10.1007/s00376-015-5194-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon, and C. P. Morice, 2012: Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res., 117, D05127, doi:10.1029/2011JD017139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., and P. A. Stott, 2006: Anthropogenic warming of central England temperature. Atmos. Sci. Lett., 7, 8185, doi:10.1002/asl.136.

  • Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011a: Reassessing biases and other uncertainties in sea surface temperature observations since 1850: 1. Measurement and sampling uncertainties. J. Geophys. Res., 116, D14103, doi:10.1029/2010JD015218.

    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011b: Reassessing biases and other uncertainties in sea-surface temperature observations since 1850: 2. Biases and homogenization. J. Geophys. Res., 116, D14104, doi:10.1029/2010JD015220.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., and Coauthors, 2017: A call for new approaches to quantifying biases in observations of sea-surface temperature. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00251.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., D. J. Karoly, G. C. Hegerl, F. W. Zwiers, M. R. Allen, and J. Marengo, 2001: Detection of climate change and attribution of causes. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 695–738.

  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset. J. Geophys. Res., 117, D08101, doi:10.1029/2011JD017187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, R. A., and Coauthors, 2013: Decadal variations in the global atmospheric land temperatures. J. Geophys. Res. Atmos., 118, 52805286, doi:10.1002/jgrd.50458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribes, A., and L. Terray, 2013: Application of regularised optimal fingerprinting to attribution. Part II: Application to global near-surface temperature. Climate Dyn., 41, 28372853, doi:10.1007/s00382-013-1736-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., K. E. Taylor, T. M. L. Wigley, J. E. Penner, P. D. Jones, and U. Cubasch, 1995: Towards the detection and attribution of an anthropogenic effect on climate. Climate Dyn., 12, 77100, doi:10.1007/BF00223722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, D. A., M. R. Allen, and P. A. Stott, 2007: A multimodel update on the detection and attribution of global surface warming. J. Climate, 20, 517530, doi:10.1175/JCLI3964.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., and S. F. B. Tett, 1998: Scale-dependent detection of climate change. J. Climate, 11, 32823294, doi:10.1175/1520-0442(1998)011<3282:SDDOCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., and G. S. Jones, 2009: Variability of high latitude amplification of anthropogenic warming. Geophys. Res. Lett., 36, L10701, doi:10.1029/2009GL037698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., S. F. B. Tett, G. S. Jones, M. R. Allen, J. F. B. Mitchell, and G. J. Jenkins, 2000: External control of 20th century temperature by natural and anthropogenic forcing. Science, 290, 21332137, doi:10.1126/science.290.5499.2133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., M. R. Allen, and G. S. Jones, 2003: Estimating signal amplitudes in optimal fingerprinting. Part II: Application to general circulation models. Climate Dyn., 21, 493500, doi:10.1007/s00382-003-0314-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., J. F. B. Mitchell, M. R. Allen, T. L. Delworth, J. M. Gregory, G. A. Meehl, and B. D. Santer, 2006: Observational constraints on past attributable warming and predictions of future global warming. J. Climate, 19, 30553069, doi:10.1175/JCLI3802.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tett, S. F. B., P. A. Stott, M. R. Allen, W. J. Ingram, and J. F. B. Mitchell, 1999: Causes of twentieth-century temperature change near the Earth’s surface. Nature, 399, 569572, doi:10.1038/21164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tett, S. F. B., and Coauthors, 2002: Estimation of natural and anthropogenic contributions to 20th century temperature change. J. Geophys. Res., 107, 4306, doi:10.1029/2000JD000028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., F. W. Zwiers, and P. A. Stott, 2006: Multimodel multisignal climate change detection at regional scale. J. Climate, 19, 42944307, doi:10.1175/JCLI3851.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1264 884 33
PDF Downloads 231 59 9