Land–Ocean Shifts in Tropical Precipitation Linked to Surface Temperature and Humidity Change

F. Hugo Lambert College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom

Search for other papers by F. Hugo Lambert in
Current site
Google Scholar
PubMed
Close
,
Angus J. Ferraro College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom

Search for other papers by Angus J. Ferraro in
Current site
Google Scholar
PubMed
Close
, and
Robin Chadwick Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Robin Chadwick in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A compositing scheme that predicts changes in tropical precipitation under climate change from changes in near-surface relative humidity (RH) and temperature is presented. As shown by earlier work, regions of high tropical precipitation in general circulation models (GCMs) are associated with high near-surface RH and temperature. Under climate change, it is found that high precipitation continues to be associated with the highest surface RH and temperatures in most CMIP5 GCMs, meaning that it is the “rank” of a given GCM grid box with respect to others that determines how much precipitation falls rather than the absolute value of surface temperature or RH change, consistent with the weak temperature gradient approximation. Further, it is demonstrated that the majority of CMIP5 GCMs are close to a threshold near which reductions in land RH produce large reductions in the RH ranking of some land regions, causing reductions in precipitation over land, particularly South America, and compensating increases over ocean. Recent work on predicting future changes in specific humidity allows the prediction of the qualitative sense of precipitation change in some GCMs when land surface humidity changes are unknown. However, the magnitudes of predicted changes are too small. Further study, perhaps into the role of radiative and land–atmosphere feedbacks, is necessary.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0649.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: F. Hugo Lambert, f.h.lambert@exeter.ac.uk

Abstract

A compositing scheme that predicts changes in tropical precipitation under climate change from changes in near-surface relative humidity (RH) and temperature is presented. As shown by earlier work, regions of high tropical precipitation in general circulation models (GCMs) are associated with high near-surface RH and temperature. Under climate change, it is found that high precipitation continues to be associated with the highest surface RH and temperatures in most CMIP5 GCMs, meaning that it is the “rank” of a given GCM grid box with respect to others that determines how much precipitation falls rather than the absolute value of surface temperature or RH change, consistent with the weak temperature gradient approximation. Further, it is demonstrated that the majority of CMIP5 GCMs are close to a threshold near which reductions in land RH produce large reductions in the RH ranking of some land regions, causing reductions in precipitation over land, particularly South America, and compensating increases over ocean. Recent work on predicting future changes in specific humidity allows the prediction of the qualitative sense of precipitation change in some GCMs when land surface humidity changes are unknown. However, the magnitudes of predicted changes are too small. Further study, perhaps into the role of radiative and land–atmosphere feedbacks, is necessary.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0649.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: F. Hugo Lambert, f.h.lambert@exeter.ac.uk

Supplementary Materials

    • Supplemental Materials (PDF 20.11 MB)
Save
  • Allan, R. P., 2012: Regime dependent changes in global precipitation. Climate Dyn., 39, 827840, doi:10.1007/s00382-011-1134-x.

  • Allan, R. P., 2014: Climate change: Dichotomy of drought and deluge. Nat. Geosci., 7, 700701, doi:10.1038/ngeo2243.

  • Andrews, T., J. M. Gregory, P. M. Forster, and M. J. Webb, 2012: Cloud adjustment and its role in CO2 radiative forcing and climate sensitivity: A review. Surv. Geophys., 33, 619635, doi:10.1007/s10712-011-9152-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, Q., and Coauthors, 2013: The Flexible Global Ocean–Atmosphere–Land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561576, doi:10.1007/s00376-012-2113-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentsen, M., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation. Geo. Model Dev., 6, 687720, doi:10.5194/gmd-6-687-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A., and Coauthors, 2016: Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Climate Change, 6, 869874, doi:10.1038/nclimate3029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2004: Understanding hydrometeorology using global models. Bull. Amer. Meteor. Soc., 85, 16731688, doi:10.1175/BAMS-85-11-1673.

  • Betts, R. A., P. M. Cox, M. Collins, P. P. Harris, C. Huntingford, and C. D. Jones, 2004: The role of ecosystem–atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor. Appl. Climatol., 78, 157175, doi:10.1007/s00704-004-0050-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, D., and Coauthors, 2013: The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteor. Oceanogr. J., 63, 4164.

  • Biasutti, M., A. H. Sobel, and Y. Kushnir, 2006: AGCM precipitation biases in the tropical Atlantic. J. Climate, 19, 935958, doi:10.1175/JCLI3673.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., C. S. Bretherton, and M. C. Wyant, 2009: Subtropical low cloud response to a warmer climate in a superparameterized climate model. Part II: Column modeling with a cloud resolving model. J. Adv. Model. Earth Syst., 1 (8), doi:10.3894/JAMES.2009.1.8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., G. Bellon, D. Klocke, S. Sherwood, S. Fermepin, and S. Denvil, 2013: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci., 6, 447451, doi:10.1038/ngeo1799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and T. Schneider, 2008: Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci., 1, 515519, doi:10.1038/ngeo248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2013: Link between land–ocean warming contrast and surface relative humidities in simulations with coupled climate models. Geophys. Res. Lett., 40, 52235227, doi:10.1002/grl.50971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2016: Understanding decreases in land relative humidity with global warming: Conceptual model and GCM simulations. J. Climate, 29, 90459061, doi:10.1175/JCLI-D-16-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldeira, K., and N. P. Myhrvold, 2013: Projections of the pace of warming following an abrupt increase in atmospheric carbon dioxide concentration. Environ. Res. Lett., 8, 034039, doi:10.1088/1748-9326/8/3/034039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., 2016: Which aspects of CO2 forcing and SST warming cause most uncertainty in projections of tropical rainfall change over land and ocean? J. Climate, 29, 24932509, doi:10.1175/JCLI-D-15-0777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., I. Boutle, and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Climate, 26, 38033822, doi:10.1175/JCLI-D-12-00543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., P. Good, T. Andrews, and G. Martin, 2014: Surface warming patterns drive tropical rainfall pattern responses to CO2 forcing on all timescales. Geophys. Res. Lett., 41, 610615, doi:10.1002/2013GL058504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., P. Good, and K. Willett, 2016: A simple moisture advection model of specific humidity change over land in response to SST warming. J. Climate, 29, 76137632, doi:10.1175/JCLI-D-16-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., C. Chang, and M. Wehner, 2013: Long-term behavior of the Atlantic interhemispheric SST gradient in the CMIP5 historical simulations. J. Climate, 26, 86288640, doi:10.1175/JCLI-D-12-00487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701, doi:10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Dal Gesso, S., J. J. van der Dussen, A. P. Siebesma, S. R. de Roode, I. A. Boutle, Y. Kamae, R. Roehrig, and J. Vial, 2015: A single-column model intercomparison on the stratocumulus representation in present-day and future climate. J. Adv. Model. Earth Syst., 7, 617647, doi:10.1002/2014MS000377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, doi:10.1175/2011JCLI3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J. L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth system model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, doi:10.1007/s00382-012-1636-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, doi:10.1175/JCLI-D-11-00560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34, 765776, doi:10.1029/97WR03499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, doi:10.1029/2005GL023272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., 2012: A mechanism for land–ocean contrasts in global monsoon trends in a warming climate. Climate Dyn., 39, 11371147, doi:10.1007/s00382-011-1270-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, A. J., F. H. Lambert, M. Collins, and G. M. Miles, 2015: Physical mechanisms of tropical climate feedbacks investigated using temperature and moisture trends. J. Climate, 28, 89688987, doi:10.1175/JCLI-D-15-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frieler, K., M. Meinshausen, T. Schneider von Deimling, T. Andrews, and P. Forster, 2011: Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbon. Geophys. Res. Lett., 38, L04702, doi:10.1029/2010GL045953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

  • Good, P., B. B. B. Booth, R. Chadwick, E. Hawkins, A. Jonko, and J. A. Lowe, 2016: Large differences in regional precipitation change between a first and second 2 K of global warming. Nat. Commun., 7, 13667, doi:10.1038/ncomms13667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., M. Joshi, and D. Frame, 2014: Wetter then drier in some tropical areas. Nat. Climate Change, 4, 646647, doi:10.1038/nclimate2299.

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y., D. M. W. Frierson, and S. M. Kang, 2013: Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett., 40, 28452850, doi:10.1002/grl.50502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, D., and Coauthors, 2014: Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geosci. Model Dev., 7, 20392064, doi:10.5194/gmdd-7-1601-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Climate Change, 3, 842845, doi:10.1038/ngeo1008.

    • Search Google Scholar
    • Export Citation
  • Krejci, R., J. Ström, M. de Reus, and W. Sahle, 2005: Single particle analysis of the accumulation mode aerosol over the northeast Amazonian tropical rain forest, Surinam, South America. Atmos. Chem. Phys., 5, 33313344, doi:10.5194/acp-5-3331-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., and P. C. Taylor, 2014: Regional variation of the tropical water vapor and lapse rate feedbacks. Geophys. Res. Lett., 41, 76347641, doi:10.1002/2014GL061987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., M. J. Webb, and M. M. Joshi, 2011: The relationship between land–ocean surface temperature contrast and radiative forcing. J. Climate, 24, 32393256, doi:10.1175/2011JCLI3893.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, B. N., and Coauthors, 2013: Storing and manipulating environmental big data with JASMIN. IEEE Conf. on Big Data, Santa Clara, CA, IEEE, 68–75, doi:10.1109/BigData.2013.6691556.

    • Crossref
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients on forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, doi:10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., S. P. Xie, and Y. Kosaka, 2012: Mechanisms for tropical tropospheric circulation change in response to global warming. J. Climate, 25, 29792994, doi:10.1175/JCLI-D-11-00048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maroon, E. A., D. M. W. Frierson, S. M. Kang, and J. Scheff, 2016: The precipitation response to an idealized subtropical continent. J. Climate, 29, 45434564, doi:10.1175/JCLI-D-15-0616.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., and Coauthors, 2011: The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev., 4, 723757, doi:10.5194/gmd-4-723-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, Y., V. Ramaswamy, and G. Persad, 2010: Two opposing effects of absorbing aerosols on global-mean precipitation. Geophys. Res. Lett., 37, L13701, doi:10.1029/2010GL042895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., C. A. Wilson, and W. M. Cunnington, 1987: On CO2 climate sensitivity and model dependence of results. Quart. J. Roy. Meteor. Soc., 113, 293322, doi:10.1002/qj.49711347517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, doi:10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oueslati, B., S. Bony, C. Risi, and J. Dufresne, 2016: Interpreting the inter-model spread in regional precipitation projections in the tropics: Role of surface evaporation and cloud radiative effects. Climate Dyn., 47, 28012815, doi:10.1007/s00382-016-2998-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52, 17841806, doi:10.1175/1520-0469(1995)052<1784:TRFATL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Previdi, M., 2010: Radiative feedbacks on global precipitation. Environ. Res. Lett., 5, 025211, doi:10.1088/1748-9326/5/2/025211.

  • Rowell, D. P., and R. G. Jones, 2006: Causes and uncertainty of future summer drying over Europe. Climate Dyn., 27, 281299, doi:10.1007/s00382-006-0125-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. M. W. Frierson, 2012: Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett., 39, L18704, doi:10.1029/2012GL052910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, 141184, doi:10.1002/2013MS000265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 1977: Axially symmetric steady-state models of the basic state for instability and climate studies. Part II. Nonlinear calculations. J. Atmos. Sci., 34, 280296, doi:10.1175/1520-0469(1977)034<0280:ASSSMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., 2014: On the role of planetary-scale waves in the abrupt seasonal transition of the Northern Hemisphere general circulation. J. Atmos. Sci., 71, 17241746, doi:10.1175/JAS-D-13-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13, 43784392, doi:10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., B. Dong, and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett., 34, L02701, doi:10.1029/2006GL028164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, doi:10.1175/JCLI4258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, doi:10.1007/s00382-011-1259-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volodin, E. M., N. A. Dianskii, and A. V. Gusev, 2010: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv. Atmos. Ocean. Phys., 46, 414431, doi:10.1134/S000143381004002X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Salzen, K., and Coauthors, 2013: The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4). Part I: Representation of physical processes. Atmos.–Ocean, 51, 104125, doi:10.1080/07055900.2012.755610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, doi:10.1175/2010JCLI3679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, S., and Coauthors, 2011: MIROC-ESM: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845872, doi:10.5194/gmdd-4-1063-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and Coauthors, 2015: The impact of parametrized convection on cloud feedback. Philos. Trans. Roy. Soc. London, 373A, 20140414, doi:10.1098/rsta.2014.0414.

    • Search Google Scholar
    • Export Citation
  • Wills, R. C., M. P. Byrne, and T. Schneider, 2016: Thermodynamic and dynamic controls on changes in the zonally anomalous hydrological cycle. Geophys. Res. Lett., 43, 46404649, doi:10.1002/2016GL068418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, T., and Coauthors, 2014: An overview of BCC climate system model development and application for climate change studies. Acta Meteor. Sin., 28, 3456, doi:10.1007/s13351-014-3041-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, and P. N. Blossey, 2009: Subtropical low cloud response to a warmer climate in a superparameterized climate model. Part I: Regime sorting and physical mechanisms. J. Adv. Model. Earth Syst., 1 (7), doi:10.3894/JAMES.2009.1.7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, doi:10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., and A. J. Broccoli, 2008: Equilibrium response of an atmosphere–mixed layer ocean model to different radiative forcing agents: Global and zonal mean response. J. Climate, 21, 43994423, doi:10.1175/2008JCLI2172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance. J. Meteor. Soc. Japan, 90A, 2364, doi:10.2151/jmsj.2012-A02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, N., and J. D. Neelin, 1999: A land–atmosphere interaction theory for the tropical deforestation problem. J. Climate, 12, 857872, doi:10.1175/1520-0442(1999)012<0857:ALAITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. Li, 2016a: Relative roles of anthropogenic aerosols and greenhouse gases in land and oceanic monsoon changes during past 156 years in CMIP5 models. Geophys. Res. Lett., 43, 52955301, doi:10.1002/2016GL069282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. Li, 2016b: Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming. Climate Dyn., 48, 987997, doi:10.1007/s00382-016-3123-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1442 577 69
PDF Downloads 680 82 7