Comparison of Low-Frequency Internal Climate Variability in CMIP5 Models and Observations

Anson H. Cheung Department of Geosciences, The University of Arizona, Tucson, Arizona

Search for other papers by Anson H. Cheung in
Current site
Google Scholar
PubMed
Close
,
Michael E. Mann Department of Meteorology and Atmospheric Science, and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Michael E. Mann in
Current site
Google Scholar
PubMed
Close
,
Byron A. Steinman Department of Earth and Environmental Sciences, and Large Lakes Observatory, University of Minnesota Duluth, Duluth, Minnesota

Search for other papers by Byron A. Steinman in
Current site
Google Scholar
PubMed
Close
,
Leela M. Frankcombe ARC Centre of Excellence for Climate System Science, and Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Leela M. Frankcombe in
Current site
Google Scholar
PubMed
Close
,
Matthew H. England ARC Centre of Excellence for Climate System Science, and Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Matthew H. England in
Current site
Google Scholar
PubMed
Close
, and
Sonya K. Miller Department of Meteorology and Atmospheric Science, and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Sonya K. Miller in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Low-frequency internal climate variability (ICV) plays an important role in modulating global surface temperature, regional climate, and climate extremes. However, it has not been completely characterized in the instrumental record and in the Coupled Model Intercomparison Project phase 5 (CMIP5) model ensemble. In this study, the surface temperature ICV of the North Pacific (NP), North Atlantic (NA), and Northern Hemisphere (NH) in the instrumental record and historical CMIP5 all-forcing simulations is isolated using a semiempirical method wherein the CMIP5 ensemble mean is applied as the external forcing signal and removed from each time series. Comparison of ICV signals derived from this semiempirical method as well as from analysis of ICV in CMIP5 preindustrial control runs reveals disagreement in the spatial pattern and amplitude between models and instrumental data on multidecadal time scales (>20 yr). Analysis of the amplitude of total variability and the ICV in the models and instrumental data indicates that the models underestimate ICV amplitude on low-frequency time scales (>20 yr in the NA; >40 yr in the NP), while agreement is found in the NH variability. A multiple linear regression analysis of ICV in the instrumental record shows that variability in the NP drives decadal-to-interdecadal variability in the NH, whereas the NA drives multidecadal variability in the NH. Analysis of the CMIP5 historical simulations does not reveal such a relationship, indicating model limitations in simulating ICV. These findings demonstrate the need to better characterize low-frequency ICV, which may help improve attribution and decadal prediction.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anson H. Cheung, ansoncheung@email.arizona.edu

A comment/reply has been published regarding this article and can be found at http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-17-0438.1 and http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-17-0531.1.

Abstract

Low-frequency internal climate variability (ICV) plays an important role in modulating global surface temperature, regional climate, and climate extremes. However, it has not been completely characterized in the instrumental record and in the Coupled Model Intercomparison Project phase 5 (CMIP5) model ensemble. In this study, the surface temperature ICV of the North Pacific (NP), North Atlantic (NA), and Northern Hemisphere (NH) in the instrumental record and historical CMIP5 all-forcing simulations is isolated using a semiempirical method wherein the CMIP5 ensemble mean is applied as the external forcing signal and removed from each time series. Comparison of ICV signals derived from this semiempirical method as well as from analysis of ICV in CMIP5 preindustrial control runs reveals disagreement in the spatial pattern and amplitude between models and instrumental data on multidecadal time scales (>20 yr). Analysis of the amplitude of total variability and the ICV in the models and instrumental data indicates that the models underestimate ICV amplitude on low-frequency time scales (>20 yr in the NA; >40 yr in the NP), while agreement is found in the NH variability. A multiple linear regression analysis of ICV in the instrumental record shows that variability in the NP drives decadal-to-interdecadal variability in the NH, whereas the NA drives multidecadal variability in the NH. Analysis of the CMIP5 historical simulations does not reveal such a relationship, indicating model limitations in simulating ICV. These findings demonstrate the need to better characterize low-frequency ICV, which may help improve attribution and decadal prediction.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anson H. Cheung, ansoncheung@email.arizona.edu

A comment/reply has been published regarding this article and can be found at http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-17-0438.1 and http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-17-0531.1.

Save
  • Ault, T. R., J. E. Cole, and S. St. George, 2012: The amplitude of decadal to multidecadal variability in precipitation simulated by state-of-the-art climate models. Geophys. Res. Lett., 39, L21705, doi:10.1029/2012GL053424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, P. T., W. Li, and S.-P. Xie, 2015: Regions of significant influence on unforced global mean surface air temperature variability in climate models. J. Geophys. Res. Atmos., 120, 480494, doi:10.1002/2014JD022576 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chafik, L., S. Häkkinen, M. H. England, J. A. Carton, S. Nigam, A. Ruiz-Barradas, A. Hannachi, and L. Miller, 2016: Global linkages originating from decadal oceanic variability in the subpolar North Atlantic. Geophys. Res. Lett., 43, 10 90910 919, doi:10.1002/2016GL071134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cowtan, K., and R. G. Way, 2014: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc., 140, 19351944, doi:10.1002/qj.2297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cowtan, K., and Coauthors, 2015: Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures. Geophys. Res. Lett., 42, 65266534, doi:10.1002/2015GL064888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., J. C. Fyfe, S.-P. Xie, and X. Dai, 2015: Decadal modulation of global surface temperature by internal climate variability. Nat. Climate Change, 5, 555559, doi:10.1038/nclimate2605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., M. Tippett, and J. Shukla, 2011: A significant component of unforced multidecadal variability in the recent acceleration of global warming. J. Climate, 24, 909926, doi:10.1175/2010JCLI3659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the NH. Climate Dyn., 16, 661676, doi:10.1007/s003820000075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., S. Manabe, and R. J. Stouffer, 1997: Multidecadal climate variability in the Greenland Sea and surrounding regions: A coupled model simulation. Geophys. Res. Lett., 24, 257260, doi:10.1029/96GL03927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., A. Voldoire, and O. Geoffroy, 2015: The recent global warming hiatus: What is the role of Pacific variability? Geophys. Res. Lett., 42, 880888, doi:10.1002/2014GL062775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nunez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, doi:10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2015: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Climate Change, 5, 560564, doi:10.1038/nclimate2617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., D. E. Parker, and T. N. Palmer, 1986: Sahel rainfall and worldwide sea temperatures 1901–85. Nature, 320, 602607, doi:10.1038/320602a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., M. H. England, M. E. Mann, and B. A. Steinman, 2015: Separating internal variability from the externally forced climate response. J. Climate, 28, 81848202, doi:10.1175/JCLI-D-15-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479, doi:10.1126/science.1060040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, doi:10.1175/2009BAMS2607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 49354940, doi:10.1073/pnas.1213302110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 56718 589, doi:10.1029/97JC01736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., 2014: A review of uncertainty in in situ measurements and data sets of sea surface temperature. Rev. Geophys., 52, 132, doi:10.1002/2013RG000434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841985, doi:10.1126/science.288.5473.1984.

  • Knight, J. R., 2009: The Atlantic multidecadal oscillation inferred from the forced climate response in coupled general circulation models. J. Climate, 22, 16101625, doi:10.1175/2008JCLI2628.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, doi:10.1029/2006GL026242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kociuba, G., and S. B. Power, 2015: Inability of CMIP5 models to simulate recent strengthening of the Walker circulation: Implications for projection. J. Climate, 28, 2035, doi:10.1175/JCLI-D-13-00752.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laepple, T., and P. Huybers, 2014: Global and regional variability in marine surface temperatures. Geophys. Res. Lett., 41, 25282534, doi:10.1002/2014GL059345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9, 24072423, doi:10.1175/1520-0442(1996)009<2407:DCVOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, doi:10.1175/JCLI-D-13-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2012: Dynamics of interdecadal climate variability: A historical perspective. J. Climate, 25, 19631995, doi:10.1175/2011JCLI3980.1.

  • MacDonald, G. M., and R. A. Case, 2005: Variations in the Pacific decadal oscillation over the past millennium. Geophys. Res. Lett., 32, L08703, doi:10.1029/2005GL022478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., 2008: Smoothing of climate time series revisited. Geophys. Res. Lett., 35, L16708, doi:10.1029/2008GL034716.

  • Mann, M. E., and J. Park, 1994: Global-scale modes of surface temperature variability on interannual to century timescales. J. Geophys. Res., 99, 25 81925 833, doi:10.1029/94JD02396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and J. Park, 1996: Joint spatio-temporal modes of surface temperature and sea level pressure variability in the NH during the last century. J. Climate, 9, 21372162, doi:10.1175/1520-0442(1996)009<2137:JSMOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and J. Park, 1999: Oscillatory spatiotemporal signal detection in climate studies: A multiple-taper spectral domain approach. Adv. Geophys., 41, 1131, doi:10.1016/S0065-2687(08)60026-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and K. A. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Trans. Amer. Geophys. Union, 87, 233241, doi:10.1029/2006EO240001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., J. Park, and R. S. Bradley, 1995: Global interdecadal and century-scale climate oscillations during the past 5 centuries. Nature, 378, 266270, doi:10.1038/378266a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., B. A. Steinman, and S. K. Miller, 2014: On forced temperature changes, internal variability, and the AMO. Geophys. Res. Lett., 41, 32113219, doi:10.1002/2014GL059233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., B. A. Steinman, S. K. Miller, L. M. Frankcombe, M. H. England, and A. H. Cheung, 2016: Predictability of the recent slowdown and subsequent recovery of large-scale surface warming using statistical methods. Geophys. Res. Lett., 43, 34593467, doi:10.1002/2016GL068159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanography, 58, 3544.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, doi:10.1073/pnas.0306738101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, J. T. Fasullo, A. Hu, and K. E. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1, 360364, doi:10.1038/nclimate1229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., 1997: A 50–70 year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett., 24, 683686, doi:10.1029/97GL00504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, doi:10.1175/JCLI-D-15-0508.1.

  • Otto, A., and Coauthors, 2013: Energy budget constraints on climate response. Nat. Geosci., 6, 415416, doi:10.1038/ngeo1836.

  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, doi:10.1007/s003820050284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., F. Delage, G. Wang, I. Smith, and G. Kociuba, 2017: Apparent limitations in the ability of CMIP5 climate models to simulate recent multi-decadal change in surface temperature: Implications for global temperature projections. Climate Dyn., doi:10.1007/s00382-016-3326-x, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726, doi:10.1038/367723a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., D. T. Shindell, and K. Tsigaridis, 2014: Reconciling warming trends. Nat. Geosci., 7, 158160, doi:10.1038/ngeo2105.

  • Seager, R., M. Hoerling, S. Schubert, H. Wang, B. Lyon, A. Kumar, J. Nakamura, and N. Henderson, 2015: Causes of the 2011–14 California drought. J. Climate, 28, 69977024, doi:10.1175/JCLI-D-14-00860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinman, B. A., M. E. Mann, and S. K. Miller, 2015: Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 347, 988991, doi:10.1126/science.1257856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1984: Some effects of finite sample size and persistence on meteorological statistics. Part I: Autocorrelations. Mon. Wea. Rev., 112, 23592368, doi:10.1175/1520-0493(1984)112<2359:SEOFSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, doi:10.1029/2006GL026894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future, 1, 1932, doi:10.1002/2013EF000165.

  • Wang, C., L. Zhang, S.-K. Lee, L. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, doi:10.1038/nclimate2118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyatt, M. G., S. Kravtsov, and A. A. Tsonis, 2012: Atlantic multidecadal oscillation and Northern Hemisphere’s climate variability. Climate Dyn., 38, 929949, doi:10.1007/s00382-011-1071-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and C. Wang, 2013: Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans, 118, 57725791, doi:10.1002/jgrc.20390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and C. Zhao, 2015: Processes and mechanisms for the model SST biases in the North Atlantic and North Pacific: A link with the Atlantic meridional overturning circulation. J. Adv. Model. Earth Syst., 7, 739758, doi:10.1002/2014MS000415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2007: Impact of Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett., 34, L23708, doi:10.1029/2007GL031601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2696 1530 54
PDF Downloads 1033 154 7