Madden–Julian Oscillation Pacific Teleconnections: The Impact of the Basic State and MJO Representation in General Circulation Models

Stephanie A. Henderson Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Stephanie A. Henderson in
Current site
Google Scholar
PubMed
Close
,
Eric D. Maloney Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Eric D. Maloney in
Current site
Google Scholar
PubMed
Close
, and
Seok-Woo Son School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Seok-Woo Son in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Teleconnection patterns associated with the Madden–Julian oscillation (MJO) significantly alter extratropical circulations, impacting weather and climate phenomena such as blocking, monsoons, the North Atlantic Oscillation, and the Pacific–North American pattern. However, the MJO has been extremely difficult to simulate in many general circulation models (GCMs), and many GCMs contain large biases in the background flow, presenting challenges to the simulation of MJO teleconnection patterns and associated extratropical impacts. In this study, the database from phase 5 of the Coupled Model Intercomparison Project (CMIP5) is used to assess the impact of model MJO and basic state quality on MJO teleconnection pattern quality, and a simple dry linear baroclinic model is employed to understand the results. Even in GCMs assessed to have good MJOs, large biases in the MJO teleconnection patterns are produced as a result of errors in the zonal extent of the Pacific subtropical jet. The horizontal structure of Indo-Pacific MJO heating in good MJO models is found to have modest impacts on the teleconnection pattern skill, in agreement with previous studies that have demonstrated little sensitivity to the location of tropical heating near the subtropical jet. However, MJO heating east of the date line can alter the teleconnection pathways over North America. Results show that GCMs with poor basic states can have equally low skill in reproducing the MJO teleconnection patterns as GCMs with poor MJO quality, suggesting that both the basic state and the MJO must be well represented in order to reproduce the correct teleconnection patterns.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Process-Oriented Model Diagnostics Special Collection.

Corresponding author e-mail: Stephanie A. Henderson, sslade1@atmos.colostate.edu

Abstract

Teleconnection patterns associated with the Madden–Julian oscillation (MJO) significantly alter extratropical circulations, impacting weather and climate phenomena such as blocking, monsoons, the North Atlantic Oscillation, and the Pacific–North American pattern. However, the MJO has been extremely difficult to simulate in many general circulation models (GCMs), and many GCMs contain large biases in the background flow, presenting challenges to the simulation of MJO teleconnection patterns and associated extratropical impacts. In this study, the database from phase 5 of the Coupled Model Intercomparison Project (CMIP5) is used to assess the impact of model MJO and basic state quality on MJO teleconnection pattern quality, and a simple dry linear baroclinic model is employed to understand the results. Even in GCMs assessed to have good MJOs, large biases in the MJO teleconnection patterns are produced as a result of errors in the zonal extent of the Pacific subtropical jet. The horizontal structure of Indo-Pacific MJO heating in good MJO models is found to have modest impacts on the teleconnection pattern skill, in agreement with previous studies that have demonstrated little sensitivity to the location of tropical heating near the subtropical jet. However, MJO heating east of the date line can alter the teleconnection pathways over North America. Results show that GCMs with poor basic states can have equally low skill in reproducing the MJO teleconnection patterns as GCMs with poor MJO quality, suggesting that both the basic state and the MJO must be well represented in order to reproduce the correct teleconnection patterns.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Process-Oriented Model Diagnostics Special Collection.

Corresponding author e-mail: Stephanie A. Henderson, sslade1@atmos.colostate.edu
Save
  • Adler, R., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahn, M.-S., and Coauthors, 2017: MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnostics. Climate Dyn., doi:10.1007/s00382-017-3558-4, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alaka, G. J., and E. D. Maloney, 2012: The influence of the MJO on upstream precursors to African easterly waves. J. Climate, 25, 32193236, doi:10.1175/JCLI-D-11-00232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic Oscillation. Nature, 455, 523527, doi:10.1038/nature07286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, A., A. J. Matthew, and D. P. Stevens, 2011: Rossby wave dynamics of the North Pacific extra-tropical response to El Niño: Importance of the basic state in coupled GCMs. Climate Dyn., 37, 391405, doi:10.1007/s00382-010-0854-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donald, A., H. Meinke, B. Power, A. de H. N. Maia, M. C. Wheeler, N. White, R. C. Stone, and J. Ribbe, 2006: Near-global impact of the Madden-Julian oscillation on rainfall. Geophys. Res. Lett., 33, L09704, doi:10.1029/2005GL025155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., E. D. Maloney, and E. A. Barnes, 2016: The influence of the Madden–Julian oscillation on Northern Hemisphere winter blocking. J. Climate, 29, 45974616, doi:10.1175/JCLI-D-15-0502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, doi:10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., 1996: Global view of the intraseasonal oscillation during northern winter. J. Climate, 9, 23862406, doi:10.1175/1520-0442(1996)009<2386:GVOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hung, M.-P., J.-L. Lin, W. Wang, D. Kim, T. Shinoda, and S. J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 61856214, doi:10.1175/JCLI-D-12-00541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120, 47184748, doi:10.1002/2014JD022375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, doi:10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, K. M. Lau, and W. Stern, 2004: Global occurrences of extreme precipitation events and the Madden–Julian oscillation: Observations and predictability. J. Climate, 17, 45754589, doi:10.1175/3238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D., 1983: Rossby wave propagation in a barotropic atmosphere. Dyn. Atmos. Oceans, 7, 111125, doi:10.1016/0377-0265(83)90013-1.

  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436, doi:10.1175/2009JCLI3063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., A. H. Sobel, E. D. Maloney, D. M. W. Frierson, and I.-S. Kang, 2011: A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. J. Climate, 24, 55065520, doi:10.1175/2011JCLI4177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2014: Process-oriented MJO simulation diagnostic: Moisture sensitivity of simulated convection. J. Climate, 27, 53795395, doi:10.1175/JCLI-D-13-00497.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K.-M., and D. E. Waliser, 2012: Intraseasonal Variability in the Atmosphere-Ocean Climate System. 2nd ed. Springer, 613 pp.

    • Crossref
    • Export Citation
  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden-Julian oscillation. J. Meteor. Soc. Japan, 72, 401412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Climate, 22, 364380, doi:10.1175/2008JCLI2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and R. Mo, 2010: Impact of the Madden–Julian oscillation on wintertime precipitation in Canada. Mon. Wea. Rev., 138, 38223839, doi:10.1175/2010MWR3363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2006: The effect of the MJO on the North American monsoon. J. Climate, 19, 333343, doi:10.1175/JCLI3684.1.

  • Madden, R. A., and P. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. Julian, 1972: Description of a global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460, doi:10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and S.-P. Xie, 2013: Sensitivity of tropical intraseasonal variability to the pattern of climate warming. J. Adv. Model. Earth Syst., 5, 3247, doi:10.1029/2012MS000171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011, doi:10.1256/qj.02.123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., and M. Watanabe, 2008: The growth and triggering mechanisms of the PNA: A MJO-PNA coherence. J. Meteor. Soc. Japan, 86, 213236, doi:10.2151/jmsj.86.213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rashid, H. A., H. H. Hendon, and M. C. Wheeler, 2011: Prediction of the Madden–Julian oscillation with the POAMA dynamical prediction system. Climate Dyn., 36, 649661, doi:10.1007/s00382-010-0754-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riddle, E. E., M. B. Stoner, N. C. Johnson, M. L. L’Heureux, D. C. Collins, and S. B. Feldstein, 2013: The impact of the MJO on clusters of wintertime circulation anomalies over the North American region. Climate Dyn., 40, 17491766, doi:10.1007/s00382-012-1493-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, doi:10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and S.-W. Son, 2012: The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian oscillation during northern winter. J. Atmos. Sci., 69, 7996, doi:10.1175/2011JAS3686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., H.-J. Lee, and D. M. W. Frierson, 2016: Unraveling the teleconnection mechanisms that induce wintertime temperature anomalies over the Northern Hemisphere continents in response to the MJO. J. Atmos. Sci., 73, 35573571, doi:10.1175/JAS-D-16-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., and P. D. Sardeshmukh, 1993: Factors determining the extratropical response to equatorial diabatic heating anomalies. J. Atmos. Sci., 50, 907918, doi:10.1175/1520-0469(1993)050<0907:FDTERT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and N. A. Bond, 2004: The Madden–Julian oscillation (MJO) and northern high latitude wintertime surface air temperatures. Geophys. Res. Lett., 31, L04104, doi:10.1029/2003GL018645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D., and Coauthors, 2009: MJO simulation diagnostics. J. Climate, 22, 30063030, doi:10.1175/2008JCLI2731.1.

  • Watanabe, M., and M. Kimoto, 2000: Atmosphere-ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126, 33433369, doi:10.1002/qj.49712657017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weare, B. C., 2013: El Niño teleconnections in CMIP5 models. Climate Dyn., 41, 21652177, doi:10.1007/s00382-012-1537-3.

  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolding, B. O., E. D. Maloney, and M. Branson, 2016: Vertically resolved weak temperature gradient analysis of the Madden-Julian oscillation in SP-CESM. J. Adv. Model. Earth Syst., 8, 15861619, doi:10.1002/2016MS000724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasui, S., and M. Watanabe, 2010: Forcing processes of the summertime circumglobal teleconnection pattern in a dry AGCM. J. Climate, 23, 20932114, doi:10.1175/2009JCLI3323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Park, D. Kim, J.-H. Yoon, and H.-M. Kim, 2015: Boreal winter MJO teleconnection in the Community Atmosphere Model version 5 with the unified convection parameterization. J. Climate, 28, 81358150, doi:10.1175/JCLI-D-15-0022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7350 4767 125
PDF Downloads 2410 437 16