Coupling of Trade Winds with Ocean Circulation Damps ITCZ Shifts

Brian Green Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Brian Green in
Current site
Google Scholar
PubMed
Close
and
John Marshall Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by John Marshall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The position of the intertropical convergence zone (ITCZ) is sensitive to the atmosphere’s hemispheric energy balance, lying in the hemisphere most strongly heated by radiative and turbulent surface energy fluxes. This study examines how the ocean circulation, through its cross-equatorial energy transport and associated surface energy fluxes, affects the ITCZ’s response to an imposed interhemispheric heating contrast in a coupled atmosphere–ocean general circulation model. Shifts of the ITCZ are strongly damped owing to a robust coupling between the atmosphere’s Hadley cells and the ocean’s subtropical cells by the trade winds and their associated surface stresses. An anomalous oceanic wind-driven cross-equatorial cell transports energy across the equator, strongly offsetting the imposed heating contrast. The circulation of this cell can be described by the combination of trade wind anomalies and the meridional gradient of sea surface temperature, which sets the temperature contrast between its upper and lower branches. The ability of the wind-driven ocean circulation to damp ITCZ shifts represents a previously unappreciated constraint on the atmosphere’s energy budget and indicates that the position of the ITCZ may be much less sensitive to interhemispheric heating contrasts than previously thought. Climatic implications of this damping are discussed.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Brian Green, brianmg@mit.edu

Abstract

The position of the intertropical convergence zone (ITCZ) is sensitive to the atmosphere’s hemispheric energy balance, lying in the hemisphere most strongly heated by radiative and turbulent surface energy fluxes. This study examines how the ocean circulation, through its cross-equatorial energy transport and associated surface energy fluxes, affects the ITCZ’s response to an imposed interhemispheric heating contrast in a coupled atmosphere–ocean general circulation model. Shifts of the ITCZ are strongly damped owing to a robust coupling between the atmosphere’s Hadley cells and the ocean’s subtropical cells by the trade winds and their associated surface stresses. An anomalous oceanic wind-driven cross-equatorial cell transports energy across the equator, strongly offsetting the imposed heating contrast. The circulation of this cell can be described by the combination of trade wind anomalies and the meridional gradient of sea surface temperature, which sets the temperature contrast between its upper and lower branches. The ability of the wind-driven ocean circulation to damp ITCZ shifts represents a previously unappreciated constraint on the atmosphere’s energy budget and indicates that the position of the ITCZ may be much less sensitive to interhemispheric heating contrasts than previously thought. Climatic implications of this damping are discussed.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Brian Green, brianmg@mit.edu
Save
  • Adam, O., T. Bischoff, and T. Schneider, 2016: Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: Zonally averaged ITCZ position. J. Climate, 29, 32193230, doi:10.1175/JCLI-D-15-0512.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adcroft, A., J. M. Campin, C. Hill, and J. Marshall, 2004: Implementation of an atmosphere–ocean general circulation model on the expanded spherical cube. Mon. Wea. Rev., 132, 28452863, doi:10.1175/MWR2823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2014: Energetic constraints on the position of the intertropical convergence zone. J. Climate, 27, 49374951, doi:10.1175/JCLI-D-13-00650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, doi:10.1029/2005GL024546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2013: Land–ocean warming contrast over a wide range of climates: Convective quasi-equilibrium theory and idealized simulations. J. Climate, 26, 40004016, doi:10.1175/JCLI-D-12-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20, 607609, doi:10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477496, doi:10.1007/s00382-005-0040-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., and J. Marshall, 2006: The partitioning of poleward heat transport between the atmosphere and ocean. J. Atmos. Sci., 63, 14981511, doi:10.1175/JAS3695.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. McGee, 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the last glacial maximum. J. Climate, 26, 35973618, doi:10.1175/JCLI-D-12-00467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, K. Armour, and D. McGee, 2014: The interannual variability of tropical precipitation and interhemispheric energy transport. J. Climate, 27, 33773392, doi:10.1175/JCLI-D-13-00499.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, doi:10.1002/qj.49712051902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enderton, D., and J. Marshall, 2009: Explorations of atmosphere–ocean–ice climates on an aquaplanet and their meridional energy transports. J. Atmos. Sci., 66, 15931611, doi:10.1175/2008JAS2680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and J. M. Campin, 2010: Localization of deep water formation: Role of atmospheric moisture transport and geometrical constraints on ocean circulation. J. Climate, 23, 14561476, doi:10.1175/2009JCLI3197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64, 19591976, doi:10.1175/JAS3935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Coauthors, 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci., 6, 940944, doi:10.1038/ngeo1987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., A. Gnanadesikan, R. C. Pacanowski, V. D. Larichev, J. K. Dukowicz, and R. D. Smith, 1998: Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr., 28, 805830, doi:10.1175/1520-0485(1998)028<0805:IDIAZC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawcroft, M., J. M. Haywood, M. Collins, A. Jones, A. C. Jones, and G. Stephens, 2016: Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: global impacts of biases in a coupled model. Climate Dyn., 48, 22792295, doi:10.1007/s00382-016-3205-5.

    • Search Google Scholar
    • Export Citation
  • Heaviside, C., and A. Czaja, 2013: Deconstructing the Hadley cell heat transport. Quart. J. Roy. Meteor. Soc., 139, 21812189, doi:10.1002/qj.2085.

  • Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58, 943948, doi:10.1175/1520-0469(2001)058<0943:TPOTPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 49354940, doi:10.1073/pnas.1213302110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2001: The dynamics of ocean heat transport variability. Rev. Geophys., 39, 385411, doi:10.1029/2000RG000084.

  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, doi:10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell, and C. Bitz, 2016: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Climate, 29, 46174636, doi:10.1175/JCLI-D-15-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., and J. Marotzke, 2000: Meridional heat transport by the subtropical cell. J. Phys. Oceanogr., 30, 696705, doi:10.1175/1520-0485(2000)030<0696:MHTBTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and A. V. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 24162427, doi:10.1175/1520-0469(1988)045<2416:HCFZAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997a: A finite‐volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi‐hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, doi:10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, J. M. Campin, C. Hill, and A. White, 2004: Atmosphere–ocean modeling exploiting fluid isomorphisms. Mon. Wea. Rev., 132, 28822894, doi:10.1175/MWR2835.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean’s role in setting the mean position of the inter-tropical convergence zone. Climate Dyn., 42, 19671979, doi:10.1007/s00382-013-1767-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., Jr., and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24, 466497, doi:10.1175/1520-0485(1994)024<0466:IBTSAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 2016: Can reducing the incoming energy flux over the Southern Ocean in a CGCM improve its simulation of tropical climate? Geophys. Res. Lett., 43, 11 05711 063, doi:10.1002/2016GL071150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyama, T., J. P. McCreary Jr., T. G. Jensen, J. Loschnigg, S. Godfrey, and A. Ishida, 2003: Structure and dynamics of the Indian-Ocean cross-equatorial cell. Deep-Sea Res. II, 50, 20232047, doi:10.1016/S0967-0645(03)00044-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 1997: Implications of convective quasi-equilibrium for the large-scale flow. The Physics and Parameterization of Moist Atmospheric Convection, R. K. Smith, Ed., Springer, 413–446.

    • Crossref
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, doi:10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, doi:10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., M. Dengler, and R. Schoenefeldt, 2002: The shallow overturning circulation of the Indian Ocean. Prog. Oceanogr., 53, 57103, doi:10.1016/S0079-6611(02)00039-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, J., S. M. Kang, and D. M. W. Frierson, 2014: Sensitivity of intertropical convergence zone movement to the latitudinal position of thermal forcing. J. Climate, 27, 30353042, doi:10.1175/JCLI-D-13-00691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomas, R. A., C. Deser, and L. Sun, 2016: The role of ocean heat transport in the global climate response to projected Arctic sea ice loss. J. Climate, 29, 68416859, doi:10.1175/JCLI-D-15-0651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443, doi:10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., B. Stevens, J. Bader, and T. Mauritsen, 2014: Compensation of hemispheric albedo asymmetries by shifts of the ITCZ and tropical clouds. J. Climate, 27, 10291045, doi:10.1175/JCLI-D-13-00205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 18531860, doi:10.1175/JCLI3460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2563 1214 70
PDF Downloads 1250 198 8