Intermodel Spread around the Kuroshio–Oyashio Extension Region in Coupled GCMs Caused by Meridional Variation of the Westerly Jet from Atmospheric GCMs

Wenyu Zhou Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Wenyu Zhou in
Current site
Google Scholar
PubMed
Close
and
Shang-Ping Xie Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Shang-Ping Xie in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Kuroshio–Oyashio Extension (KOE) is a region of energetic oceanic mesoscale eddies and vigorous air–sea interaction that can influence climate variability over the northwest Pacific and East Asia. General circulation models (GCMs) exhibit considerable differences in their simulated climatology around the KOE region. Specifically, there are substantial intermodel spreads in both sea surface temperature (SST) and the upper-level westerly jet. In this study, the cause for such large spreads is studied by analyzing 21 pairs of coupled and atmospheric GCMs from phase 5 of the Coupled Model Intercomparison Project (CMIP5).

It is found that the intermodel spread of the climatological westerly jet among coupled GCMs is largely inherited from their atmospheric models rather than being due to their SST difference as previously thought. An anomalous equatorward shift in the simulated westerly jet can give rise to a cold SST bias around the KOE region as follows. The equatorward jet shift induces cyclonic surface wind anomalies over the North Pacific, which not only enhance the turbulent heat fluxes out of the ocean south of the KOE but also drive an anomalous cyclonic ocean circulation that brings colder (warmer) water into the north (south) of the KOE. The KOE region is consequently cooled due to both the atmospheric and oceanic effects. Such processes are demonstrated through idealized perturbation experiments using an ocean model.

The results herein point to reducing atmospheric model errors in the westerly jet as the way forward to improve the coupled simulations around the KOE region.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wenyu Zhou, zhouwy1128@gmail.com

Abstract

The Kuroshio–Oyashio Extension (KOE) is a region of energetic oceanic mesoscale eddies and vigorous air–sea interaction that can influence climate variability over the northwest Pacific and East Asia. General circulation models (GCMs) exhibit considerable differences in their simulated climatology around the KOE region. Specifically, there are substantial intermodel spreads in both sea surface temperature (SST) and the upper-level westerly jet. In this study, the cause for such large spreads is studied by analyzing 21 pairs of coupled and atmospheric GCMs from phase 5 of the Coupled Model Intercomparison Project (CMIP5).

It is found that the intermodel spread of the climatological westerly jet among coupled GCMs is largely inherited from their atmospheric models rather than being due to their SST difference as previously thought. An anomalous equatorward shift in the simulated westerly jet can give rise to a cold SST bias around the KOE region as follows. The equatorward jet shift induces cyclonic surface wind anomalies over the North Pacific, which not only enhance the turbulent heat fluxes out of the ocean south of the KOE but also drive an anomalous cyclonic ocean circulation that brings colder (warmer) water into the north (south) of the KOE. The KOE region is consequently cooled due to both the atmospheric and oceanic effects. Such processes are demonstrated through idealized perturbation experiments using an ocean model.

The results herein point to reducing atmospheric model errors in the westerly jet as the way forward to improve the coupled simulations around the KOE region.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wenyu Zhou, zhouwy1128@gmail.com
Save
  • Chen, G., I. M. Held, and W. A. Robinson, 2007: Sensitivity of the latitude of the surface westerlies to surface friction. J. Atmos. Sci., 64, 28992915, doi:10.1175/JAS3995.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delcambre, S. C., D. J. Lorenz, D. J. Vimont, and J. E. Martin, 2013: Diagnosing Northern Hemisphere jet portrayal in 17 CMIP3 global climate models: Twentieth-century intermodel variability. J. Climate, 26, 49104929, doi:10.1175/JCLI-D-12-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. L. Blackmon, 1995: On the relationship between tropical and North Pacific sea surface temperature variations. J. Climate, 8, 16771680, doi:10.1175/1520-0442(1995)008<1677:OTRBTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 1999: Evidence for a wind-driven intensification of the Kuroshio Current Extension from the 1970s to the 1980s. J. Climate, 12, 16971706, doi:10.1175/1520-0442(1999)012<1697:EFAWDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., L. Yang, and S.-P. Xie, 2011: Tropical Indian Ocean influence on northwest Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24, 315322, doi:10.1175/2010JCLI3890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665669, doi:10.1038/44326.

  • Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19, 675697, doi:10.1175/JCLI3630.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2004: Technical guide to MOM4. GFDL Ocean Group Tech. Rep. 5, 337 pp.

  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579, doi:10.5194/os-1-45-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modell., 26, 146, doi:10.1016/j.ocemod.2008.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2011: The GFDL CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. J. Climate, 24, 35203544, doi:10.1175/2011JCLI3964.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., and S. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Note NCAR/TN-460+STR, 105 pp., doi:10.5065/D6KK98Q6.

    • Crossref
    • Export Citation
  • Lin, Z., and R. Lu, 2005: Interannual meridional displacement of the East Asian upper-tropospheric jet stream in summer. Adv. Atmos. Sci., 22, 199, doi:10.1007/BF02918509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindvall, J., G. Svensson, and R. Caballero, 2017: The impact of changes in parameterizations of surface drag and vertical diffusion on the large-scale circulation in the Community Atmosphere Model (CAM5). Climate Dyn., doi:10.1007/s00382-016-3299-9, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. W. Frierson, 2010: The position of the midlatitude storm track and eddy-driven westerlies in aquaplanet AGCMs. J. Atmos. Sci., 67, 39844000, doi:10.1175/2010JAS3477.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, L. R. Leung, D. A. Burrows, Q. Yang, K. Sakaguchi, and S. Hagos, 2015: Toward the dynamical convergence on the jet stream in aquaplanet AGCMs. J. Climate, 28, 67636782, doi:10.1175/JCLI-D-14-00761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., H. Ding, C.-S. Ryu, Z. Lin, and H. Dong, 2007: Midlatitude westward propagating disturbances preceding intraseasonal oscillations of convection over the subtropical western North Pacific during summer. Geophys. Res. Lett., 34, L21702, doi:10.1029/2007GL031277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., H. Xu, and P. Lin, 2015: Meridional position biases of East Asian subtropical jet stream in CMIP5 models and their relationship with ocean model resolutions. Int. J. Climatol., 35, 39423958, doi:10.1002/joc.4256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., S.-P. Xie, F. Primeau, J. C. McWilliams, and C. Pasquero, 2015: Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Sci. Adv., 1, e1500014, doi:10.1126/sciadv.1500014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, A. J., D. R. Cayan, and W. B. White, 1998: A westward-intensified decadal change in the North Pacific thermocline and gyre-scale circulation. J. Climate, 11, 31123127, doi:10.1175/1520-0442(1998)011<3112:AWIDCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., G. Lin, and T. Yamagata, 1997: Decadal climate variability in the North Pacific during the recent decades. Bull. Amer. Meteor. Soc., 78, 22152225, doi:10.1175/1520-0477(1997)078<2215:DCVITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., T. G. Shepherd, G. Zappa, and I. Sandu, 2016: Climate model biases in jet streams, blocking and storm tracks resulting from missing orographic drag. Geophys. Res. Lett., 43, 72317240, doi:10.1002/2016GL069551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, V., and R. Stratton, 2002: The processes governing horizontal resolution sensitivity in a climate model. Climate Dyn., 19, 211236, doi:10.1007/s00382-001-0222-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, N. H. Naik, M. A. Cane, and J. Miller, 2001: Wind-driven shifts in the latitude of the Kuroshio–Oyashio Extension and generation of SST anomalies on decadal timescales. J. Climate, 14, 42494265, doi:10.1175/1520-0442(2001)014<4249:WDSITL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueda, H., T. Yasunari, and R. Kawamura, 1995: Abrupt seasonal change of large-scale convective activity over the western Pacific in the northern summer. J. Meteor. Soc. Japan, 73, 795809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., L. Zhang, S.-K. Lee, L. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, doi:10.1038/nclimate2118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., T. Kunitani, A. Kubokawa, M. Nonaka, and S. Hosoda, 2000: Interdecadal thermocline variability in the North Pacific for 1958–97: A GCM simulation. J. Phys. Oceanogr., 30, 27982813, doi:10.1175/1520-0485(2000)030<2798:ITVITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, doi:10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and C. Zhao, 2015: Processes and mechanisms for the model SST biases in the North Atlantic and North Pacific: A link with the Atlantic meridional overturning circulation. J. Adv. Model. Earth Syst., 7, 739758, doi:10.1002/2014MS000415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ’86/87 and ’91/92 events. J. Meteor. Soc. Japan, 74, 4962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, W., S.-P. Xie, and Z.-Q. Zhou, 2016: Slow preconditioning for the abrupt convective jump over the northwest Pacific during summer. J. Climate, 29, 81038113, doi:10.1175/JCLI-D-16-0342.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 875 540 39
PDF Downloads 286 53 13