Multiyear Variability in the Tasman Sea and Impacts on Southern Hemisphere Climate in CMIP5 Models

Christine T. Y. Chung Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Christine T. Y. Chung in
Current site
Google Scholar
PubMed
Close
,
Scott B. Power Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Scott B. Power in
Current site
Google Scholar
PubMed
Close
,
Agus Santoso Australian Research Council Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Agus Santoso in
Current site
Google Scholar
PubMed
Close
, and
Guomin Wang Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Guomin Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Naturally occurring multiyear to decadal variability is evident in rainfall, temperature, severe weather, and flood frequency around the globe. It is therefore important to understand the cause of this variability and the extent to which it can be predicted. Here internally generated decadal climate variability and its predictability potential in an ensemble of CMIP5 models are assessed. Global hot spots of subsurface ocean decadal variability are identified, revealing variability in the southern Tasman Sea that is coherent with variability in much of the Pacific Ocean and Southern Hemisphere. It is found that subsurface temperature variability in the southern Tasman Sea primarily arises in response to preceding changes in Southern Hemisphere winds. This variability is multiyear to decadal in character and is coherent with surface temperature in parts of the Southern Hemisphere up to several years later. This provides some degree of potential predictability to surface temperature in the southern Tasman Sea and surrounding regions. A few models exhibit significant correlation between subsurface variability in the southern Tasman Sea and zonally averaged precipitation south of 50°S; however, the multimodel mean does not exhibit any significant correlation between subsurface variability and precipitation. Models that exhibit stronger subsurface variability in the southern Tasman Sea also have a stronger interdecadal Pacific oscillation signal in the Pacific.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0862.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Christine T. Y. Chung, christine.chung@bom.gov.au

Abstract

Naturally occurring multiyear to decadal variability is evident in rainfall, temperature, severe weather, and flood frequency around the globe. It is therefore important to understand the cause of this variability and the extent to which it can be predicted. Here internally generated decadal climate variability and its predictability potential in an ensemble of CMIP5 models are assessed. Global hot spots of subsurface ocean decadal variability are identified, revealing variability in the southern Tasman Sea that is coherent with variability in much of the Pacific Ocean and Southern Hemisphere. It is found that subsurface temperature variability in the southern Tasman Sea primarily arises in response to preceding changes in Southern Hemisphere winds. This variability is multiyear to decadal in character and is coherent with surface temperature in parts of the Southern Hemisphere up to several years later. This provides some degree of potential predictability to surface temperature in the southern Tasman Sea and surrounding regions. A few models exhibit significant correlation between subsurface variability in the southern Tasman Sea and zonally averaged precipitation south of 50°S; however, the multimodel mean does not exhibit any significant correlation between subsurface variability and precipitation. Models that exhibit stronger subsurface variability in the southern Tasman Sea also have a stronger interdecadal Pacific oscillation signal in the Pacific.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0862.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Christine T. Y. Chung, christine.chung@bom.gov.au

Supplementary Materials

    • Supplemental Materials (DOCX 717.35 KB)
Save
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, doi:10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 2011: Decadal potential predictability of twenty-first century climate. Climate Dyn., 36, 11191133, doi:10.1007/s00382-010-0747-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and S. J. Lambert, 2008: Multi-model decadal potential predictability of precipitation and temperature. Geophys. Res. Lett., 35, L05706, doi:10.1029/2008GL033234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., V. V. Kharin, and W. J. Merryfield, 2013: Decadal predictability and forecast skill. Climate Dyn., 41, 18171833, doi:10.1007/s00382-013-1705-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., P. H. Whetton, and D. J. Karoly, 2003: The response of the Antarctic Oscillation to increasing and stabilized atmospheric CO2. J. Climate, 16, 15251538, doi:10.1175/1520-0442-16.10.1525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., 1984: Commentary: Short-term climatic variability in the Northeast Pacific Ocean. The Influence of Ocean Conditions on the Production of Salmonids in the North Pacific, W. Pearcy, Ed., Oregon State University Press, 87–99.

  • Chikamoto, Y., and Coauthors, 2013: An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC. Climate Dyn., 40, 12011222, doi:10.1007/s00382-012-1351-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, doi:10.1007/s00382-012-1636-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, J., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, doi:10.1175/JCLI-D-11-00560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds. Cambridge University Press, 741–882, doi:10.1017/CBO9781107415324.020.

    • Crossref
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, Part II. Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305, doi:10.3402/tellusa.v29i4.11362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., G. R. Cresswell, T. J. Golding, A. F. Pearce, and R. Boyd, 1980: The separation of the East Australian Current. J. Phys. Oceanogr., 10, 430440, doi:10.1175/1520-0485(1980)010<0430:TSOTEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1999: Definition of Antarctic oscillation index. Geophys. Res. Lett., 26, 459462, doi:10.1029/1999GL900003.

  • Goodwin, I. D., M. A. Stables, and J. Olley, 2006: Wave climate, sediment budget and shoreline alignment evolution of the Iluka-Woody Bay sand barrier, northern NSW, Australia, since 3000 yr BP. Mar. Geol., 226, 127144, doi:10.1016/j.margeo.2005.09.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S., and Coauthors, 2011: The GFDL CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. J. Climate, 24, 35203544, doi:10.1175/2011JCLI3964.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2014: Southern Hemisphere cloud–dynamics biases in CMIP5 models and their implications for climate projections. J. Climate, 27, 60746092, doi:10.1175/JCLI-D-14-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henley, B. J., J. Gergis, D. J. Karoly, S. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the interdecadal Pacific oscillation. Climate Dyn., 45, 30773090, doi:10.1007/s00382-015-2525-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henley, B. J., and Coauthors, 2017: Spatial and temporal agreement in climate model simulations of the interdecadal Pacific oscillation. Environ. Res. Lett., 12, 044011, doi:10.1088/1748-9326/aa5cc8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, K. L., S. R. Rintoul, R. Coleman, and K. R. Ridgway, 2008: Wind forced low frequency variability of the East Australian Current. Geophys. Res. Lett., 35, L08602, doi:10.1029/2007GL032912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, K. L., S. R. Rintoul, K. R. Ridgway, and P. R. Oke, 2011: Decadal changes in the South Pacific western boundary current system revealed in observations and ocean state estimates. J. Geophys. Res., 116, C01009, doi:10.1029/2009JC005926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirabara, M., H. Ishizaki, and I. Ishikawa, 2007: Effects of the westerly wind stress over the Southern Ocean on the meridional overturning. J. Phys. Oceanogr., 37, 21142132, doi:10.1175/JPO3112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holbrook, N. J., I. D. Goodwin, S. McGregor, E. Molina, and S. B. Power, 2011: ENSO to multi-decadal time scale changes in East Australian Current transports and Fort Denison sea level: Oceanic Rossby waves as the connecting mechanism. Deep-Sea Res. II, 58, 547558, doi:10.1016/j.dsr2.2010.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Kirtman, B., and Coauthors, 2013: Near-term climate change: Projections and predictability. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 953–1028.

  • Lukas, R., 2001: Freshening of the upper thermocline in the North Pacific subtropical gyre associated with decadal changes of rainfall. Geophys. Res. Lett., 28, 34853488, doi:10.1029/2001GL013116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monselesan, D. P., T. J. O’Kane, J. S. Risbey, and J. Church, 2015: Internal climate memory in observations and models. Geophys. Res. Lett., 42, 12321242, doi:10.1002/2014GL062765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., R. J. Matear, M. A. Chamberlain, J. S. Risbey, B. M. Sloyan, and I. Horenko, 2013: Decadal variability in an OGCM Southern Ocean: Intrinsic modes, forced modes and metastable states. Ocean Modell., 69, 121, doi:10.1016/j.ocemod.2013.04.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., R. J. Matear, M. A. Chamberlain, E. C. J. Oliver, and N. J. Holbrook, 2014: Storm tracks in the Southern Hemisphere subtropical oceans. J. Geophys. Res. Oceans, 119, 60786100, doi:10.1002/2014JC009990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., D. P. Monselesan, and C. Maes, 2016: On the stability and spatiotemporal variance distribution of salinity in the upper ocean. J. Geophys. Res. Oceans, 121, 41284148, doi:10.1002/2015JC011523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, P. R., and M. J. England, 2004: Oceanic response to changes in the latitude of the Southern Hemisphere subpolar westerly winds. J. Climate, 17, 10401054, doi:10.1175/1520-0442(2004)017<1040:ORTCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S. B., and R. Colman, 2006: Multi-year predictability in a coupled general circulation model. Climate Dyn., 26, 247272, doi:10.1007/s00382-005-0055-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S. B., and J. Callaghan, 2016: Variability in severe coastal flooding, associated storms, and death tolls in southeastern Australia since the mid–nineteenth century. J. Appl. Meteor. Climatol., 55, 11391149, doi:10.1175/JAMC-D-15-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S. B., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, doi:10.1007/s003820050284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S. B., B. Sadler, and N. Nicholls, 2005: The influence of climate science on water management in Western Australia: Lessons for climate scientists. Bull. Amer. Meteor. Soc., 86, 839844, doi:10.1175/BAMS-86-6-839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S. B., and Coauthors, 2017: Towards the prediction of multi-year to decadal climate variability in the Southern Hemisphere. CLIVAR Exchanges, submitted.

    • Crossref
    • Export Citation
  • Pyper, B. J., and R. M. Peterman, 1998: Comparison of methods to account for autocorrelation in correlation analyses of fish data. Can. J. Fish. Aquat. Sci., 55, 21272140, doi:10.1139/f98-104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1992: Modelling ocean temperatures and mixed-layer depths in the Tasman Sea off the South Island, New Zealand. N. Z. J. Mar. Freshwater Res., 26, 3751, doi:10.1080/00288330.1992.9516498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 255–315.

  • Schmitt, R. W., 2008: Salinity and the global water cycle. Oceanography, 21, 1219, doi:10.5670/oceanog.2008.63.

  • Sen Gupta, A., N. C. Jourdain, J. N. Brown, and D. Monselesan, 2013: Climate drift in the CMIP5 models. J. Climate, 26, 85978615, doi:10.1175/JCLI-D-12-00521.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and T. J. O’Kane, 2015: Drivers of decadal variability in the Tasman Sea. J. Geophys. Res. Oceans, 120, 31933210, doi:10.1002/2014JC010550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D., and Coauthors, 2006: Radiative and dynamical feedbacks over the equatorial cold tongue: Results from nine atmospheric GCMs. J. Climate, 19, 40594074, doi:10.1175/JCLI3835.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A summary of the CMIP5 experiment design. 33 pp. [Available online at http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf.]

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tilburg, C. E., H. E. Hurlburt, J. J. O’Brien, and J. F. Shriver, 2001: The dynamics of the East Australian Current system: The Tasman Front, the East Auckland Current, and the East Cape Current. J. Phys. Oceanogr., 31, 29172943, doi:10.1175/1520-0485(2001)031<2917:TDOTEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tilburg, C. E., B. Subrahmanyam, and J. J. O’Brien, 2002: Ocean color variability in the Tasman Sea. Geophys. Res. Lett., 29, 1487, doi:10.1029/2001GL014071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance. J. Meteor. Soc. Japan, 90, 2364, doi:10.2151/jmsj.2012-A02.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1495 1200 34
PDF Downloads 234 29 6