On the Relationship between Spring NAO and Snowmelt in the Upper Southwestern United States

Boksoon Myoung APEC Climate Center, Busan, South Korea

Search for other papers by Boksoon Myoung in
Current site
Google Scholar
PubMed
Close
,
Seung Hee Kim Center of Excellence in Earth Systems Modeling and Observations, Chapman University, Orange, California

Search for other papers by Seung Hee Kim in
Current site
Google Scholar
PubMed
Close
,
Jinwon Kim Joint Institute for Regional Earth System Sciences and Engineering, University of California, Los Angeles, Los Angeles, California

Search for other papers by Jinwon Kim in
Current site
Google Scholar
PubMed
Close
, and
Menas C. Kafatos Center of Excellence in Earth Systems Modeling and Observations, Chapman University, Orange, California

Search for other papers by Menas C. Kafatos in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the relationship between the North Atlantic Oscillation (NAO) and snowmelt in spring in the upper southwestern states of the United States (UP_SW) including California, Nevada, Utah, and Colorado, using SNOTEL datasets for 34 yr (1980–2014). Statistically significant negative correlations are found between NAO averages in the snowmelt period and timings of snowmelt (i.e., positive NAO phases in spring enhance snowmelt, and vice versa). It is also found that correlations between El Niño–Southern Oscillation and snowmelt are negligible in the region. The NAO–snowmelt relationship is most pronounced below the 2800-m level; above this level, the relationship becomes weaker. The underlying mechanism for this link is that a positioning of upper-tropospheric anticyclonic (cyclonic) circulations over the western United States that are associated with development of the positive (negative) NAO phases tends to bring warmer and drier (colder and wetter) spring weather conditions to the region. The temperature variations related with the NAO phases also strongly modulate the snowfall–rainfall partitioning. The relationship between the NAO and spring snowmelt can serve as key information for the warm season water resources management in the UP_SW.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0239.s1.

Corresponding author e-mail: Boksoon Myoung, bmyoung@apcc21.org

Abstract

This study examines the relationship between the North Atlantic Oscillation (NAO) and snowmelt in spring in the upper southwestern states of the United States (UP_SW) including California, Nevada, Utah, and Colorado, using SNOTEL datasets for 34 yr (1980–2014). Statistically significant negative correlations are found between NAO averages in the snowmelt period and timings of snowmelt (i.e., positive NAO phases in spring enhance snowmelt, and vice versa). It is also found that correlations between El Niño–Southern Oscillation and snowmelt are negligible in the region. The NAO–snowmelt relationship is most pronounced below the 2800-m level; above this level, the relationship becomes weaker. The underlying mechanism for this link is that a positioning of upper-tropospheric anticyclonic (cyclonic) circulations over the western United States that are associated with development of the positive (negative) NAO phases tends to bring warmer and drier (colder and wetter) spring weather conditions to the region. The temperature variations related with the NAO phases also strongly modulate the snowfall–rainfall partitioning. The relationship between the NAO and spring snowmelt can serve as key information for the warm season water resources management in the UP_SW.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0239.s1.

Corresponding author e-mail: Boksoon Myoung, bmyoung@apcc21.org

Supplementary Materials

    • Supplemental Materials (DOCX 540.17 KB)
Save
  • Auer, A. H., 1974: The rain versus snow threshold temperature. Weatherwise, 27, 67, doi:10.1080/00431672.1974.9931684.

  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., S. Lee, and S. B. Feldstein, 2004: Synoptic view of the North Atlantic Oscillation. J. Atmos. Sci., 61, 121144, doi:10.1175/1520-0469(2004)061<0121:SVOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, S. J., J. Caesar, and C. A. T. Ferro, 2008: Global changes in extreme daily temperature since 1950. J. Geophys. Res., 113, D05115, doi:10.1029/2006JD008091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrera, M., R. Higgins, and V. Kousky, 2004: Downstream weather impacts associated with atmospheric blocking over the northeast Pacific. J. Climate, 17, 48234839, doi:10.1175/JCLI-3237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1996: Interannual climate variability and snowpack in the western United States. J. Climate, 9, 928948, doi:10.1175/1520-0442(1996)009<0928:ICVASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., S. A. Kammerdiener, M. D. Dettinger, J. M. Caprio, and D. H. Peterson, 2001: Changes in the onset of spring in the western United States. Bull. Amer. Meteor. Soc., 82, 399415, doi:10.1175/1520-0477(2001)082<0399:CITOOS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. P., M. C. Serreze, and G. J. McCabe, 2001: Historical effects of El Niño and La Niña events on the seasonal evolution of the montane snowpack in the Columbia and Colorado River basins. Water Resour. Res., 37, 741757, doi:10.1029/2000WR900305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clow, D. W., 2010: Changes in the timing of snowmelt and streamflow in Colorado: A response to recent warming. J. Climate, 23, 22932306, doi:10.1175/2009JCLI2951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2008: Temperature and pressure dependence of the rain–snow phase transition over land and ocean. Geophys. Res. Lett., 35, L12802, doi:10.1029/2008GL033295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., F. Zeng, G. A. Vecchi, X. Yang, L. Zhang, and R. Zhang, 2016: The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nat. Geosci., 9, 509512, doi:10.1038/ngeo2738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M., and D. R. Cayan, 2014: Drought and the California delta—A matter of extremes. San Francisco Estuary Watershed Sci., 12, 16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and T. Barnett, 1998: Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc., 79, 27152725, doi:10.1175/1520-0477(1998)079<2715:IMOET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2011: Atmospheric blocking and Atlantic multidecadal ocean variability. Science, 334, 655659, doi:10.1126/science.1205683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., P. W. Mote, M. P. Clark, and D. P. Lettenmaier, 2005: Effects of temperature and precipitation variability on snowpack trends in the western United States. J. Climate, 18, 45454561, doi:10.1175/JCLI3538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., A. Leetmaa, Y. Xue, and A. Barnston, 2000: Dominant factors influencing the seasonal predictability of U.S. precipitation and surface air temperature. J. Climate, 13, 39944017, doi:10.1175/1520-0442(2000)013<3994:DFITSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, T., G. Tootle, and T. Piechota, 2006: Oceanic–atmospheric variability and western U.S. snowfall. Geophys. Res. Lett., 33, L13706, doi:10.1029/2006GL026600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and H. van Loon, 1997: Decadal variations in climate associated with the North Atlantic Oscillation. Climatic Change, 36, 301326, doi:10.1023/A:1005314315270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kienzle, S. W., 2008: A new temperature based method to separate rain and snow. Hydrol. Processes, 22, 50675085, doi:10.1002/hyp.7131.

  • McAfee, S. A., and J. L. Russell, 2008: Northern annular mode impact on spring climate in the western United States. Geophys. Res. Lett., 35, L17701, doi:10.1029/2008GL034828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and M. D. Dettinger, 1999: Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States. Int. J. Climatol., 19, 13991410, doi:10.1002/(SICI)1097-0088(19991115)19:13<1399::AID-JOC457>3.0.CO;2-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and M. P. Clark, 2005: Trends and variability in snowmelt runoff in the western United States. J. Hydrometeor., 6, 476482, doi:10.1175/JHM428.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., 2003: Trends in snow water equivalent in the Pacific Northwest and their climatic causes. Geophys. Res. Lett., 30, 1601, doi:10.1029/2003GL017258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., 2006: Climate driven variability and trends in mountain snowpack in western North America. J. Climate, 19, 62096220, doi:10.1175/JCLI3971.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., A. F. Hamlet, M. P. Clark, and D. P. Lettenmaier, 2005: Declining mountain snowpack in western North America. Bull. Amer. Meteor. Soc., 86, 3949, doi:10.1175/BAMS-86-1-39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myoung, B., and Y. Deng, 2009: Interannual variability of the cyclone activity along the U.S. Pacific Coast: Influences on the characteristics of winter precipitation in the western United States. J. Climate, 22, 57325747, doi:10.1175/2009JCLI2889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myoung, B., S. H. Kim, J. Kim, and M. Kafatos, 2015: On the relationship between the North Atlantic Oscillation and early warm season temperatures in the southwestern United States. J. Climate, 28, 56835698, doi:10.1175/JCLI-D-14-00521.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pederson, G. T., S. T. Gray, T. Ault, W. Marsh, D. B. Fagre, A. G. Bunn, C. A. Woodhouse, and L. J. Graumlich, 2011: Climatic controls on the snowmelt hydrology of the northern Rocky Mountains. J. Climate, 24, 16661687, doi:10.1175/2010JCLI3729.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. P. Clark, R. L. Armstrong, D. A. McGinnis, and R. S. Pulwarty, 1999: Characteristics of the western United States snowpack from Snowpack Telemetry (SNOTEL) data. Water Resour. Res., 35, 21452160, doi:10.1029/1999WR900090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, I. T., 2009: Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Processes, 23, 7894, doi:10.1002/hyp.7128.

  • Stewart, I. T., D. R. Cayan, and M. D. Dettinger, 2005: Changes towards earlier streamflow timing across western North America. J. Climate, 18, 11361155, doi:10.1175/JCLI3321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and H. Wang, 2012: Changes of the connection between the summer North Atlantic Oscillation and the East Asian summer rainfall. J. Geophys. Res., 117, D08110, doi:10.1029/2012JD017482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, doi:10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 8589, doi:10.1126/science.1058958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036, doi:10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tootle, G., T. Piechota, and A. Singh, 2005: Coupled oceanic–atmospheric variability and U.S. streamflow. Water Resour. Res., 41, W12408, doi:10.1029/2005WR004381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wettstein, J. J., and L. O. Mearns, 2002: The influence of the North Atlantic–Arctic Oscillation on mean, variance, and extremes of temperature in the northeastern United States and Canada. J. Climate, 15, 35863600, doi:10.1175/1520-0442(2002)015<3586:TIOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yiou, P., and M. Nogaj, 2004: Extreme climatic events and weather regimes over the North Atlantic: When and where? Geophys. Res. Lett., 31, L07202, doi:10.1029/2003GL019119.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 382 106 9
PDF Downloads 268 69 5