Distinct Patterns of Tropical Pacific SST Anomaly and Their Impacts on North American Climate

Yuanyuan Guo Center for Monsoon and Environment Research, School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China, and Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Yuanyuan Guo in
Current site
Google Scholar
PubMed
Close
,
Mingfang Ting Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Mingfang Ting in
Current site
Google Scholar
PubMed
Close
,
Zhiping Wen Center for Monsoon and Environment Research, School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China

Search for other papers by Zhiping Wen in
Current site
Google Scholar
PubMed
Close
, and
Dong Eun Lee Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Dong Eun Lee in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A neural-network-based cluster technique, the so-called self-organizing map (SOM), was performed to extract distinct sea surface temperature (SST) anomaly patterns during boreal winter. The SOM technique has advantages in nonlinear feature extraction compared to the commonly used empirical orthogonal function analysis and is widely used in meteorology. The eight distinguishable SOM patterns so identified represent three La Niña–like patterns, two near-normal patterns, and three El Niño–like patterns. These patterns show the varied amplitude and location of the SST anomalies associated with El Niño and La Niña, such as the central Pacific (CP) and eastern Pacific (EP) El Niño. The impact of each distinctive SOM pattern on winter-mean surface temperature and precipitation changes over North America was examined. Based on composite maps with observational data, each SOM pattern corresponds to a distinguishable spatial structure of temperature and precipitation anomaly over North America, which seems to result from differing wave train patterns, extending from the tropics to mid–high latitudes induced by longitudinally shifted tropical heating. The corresponding teleconnection as represented by the National Center for Atmospheric Research Community Atmospheric Model, version 4 (CAM4), was compared with the observational results. It was found that the 16-member ensemble average of the CAM4 experiments with prescribed SST can reproduce the observed atmospheric circulation responses to the different SST SOM patterns, which suggests that the circulation differences are largely SST driven rather than due to internal atmospheric variability.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuanyuan Guo, guoyyuan@mail2.sysu.edu.cn

Abstract

A neural-network-based cluster technique, the so-called self-organizing map (SOM), was performed to extract distinct sea surface temperature (SST) anomaly patterns during boreal winter. The SOM technique has advantages in nonlinear feature extraction compared to the commonly used empirical orthogonal function analysis and is widely used in meteorology. The eight distinguishable SOM patterns so identified represent three La Niña–like patterns, two near-normal patterns, and three El Niño–like patterns. These patterns show the varied amplitude and location of the SST anomalies associated with El Niño and La Niña, such as the central Pacific (CP) and eastern Pacific (EP) El Niño. The impact of each distinctive SOM pattern on winter-mean surface temperature and precipitation changes over North America was examined. Based on composite maps with observational data, each SOM pattern corresponds to a distinguishable spatial structure of temperature and precipitation anomaly over North America, which seems to result from differing wave train patterns, extending from the tropics to mid–high latitudes induced by longitudinally shifted tropical heating. The corresponding teleconnection as represented by the National Center for Atmospheric Research Community Atmospheric Model, version 4 (CAM4), was compared with the observational results. It was found that the 16-member ensemble average of the CAM4 experiments with prescribed SST can reproduce the observed atmospheric circulation responses to the different SST SOM patterns, which suggests that the circulation differences are largely SST driven rather than due to internal atmospheric variability.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuanyuan Guo, guoyyuan@mail2.sysu.edu.cn
Save
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamini, Y., and Y. Hochberg, 1995: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc., 57B, 289300.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2009: La Niña Modoki impacts Australia autumn rainfall variability. Geophys. Res. Lett., 36, L12805, doi:10.1029/2009GL037885.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, doi:10.1175/BAMS-D-13-00117.1.

  • Chen, Z., Z. Wen, R. Wu, P. Zhao, and J. Cao, 2014: Influence of two types of El Niños on the East Asian climate during boreal summer: A numerical study. Climate Dyn., 43, 469481, doi:10.1007/s00382-013-1943-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2013: Impacts on seasonal U.S. atmospheric circulation, temperature, and precipitation anomalies: The OLR-event perspective. J. Climate, 26, 822837, doi:10.1175/JCLI-D-12-00097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2015: Global seasonal precipitation anomalies robustly associated with El Niño and La Niña Events—An OLR perspective. J. Climate, 28, 61336159, doi:10.1175/JCLI-D-14-00387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J., S.-I. An, J.-S. Kug, and S.-W. Yeh, 2011: The role of mean state on changes in El Niño flavor. Climate Dyn., 37, 12051215, doi:10.1007/s00382-010-0912-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2007: Atmospheric circulation regimes: Can cluster analysis provide the number? J. Climate, 20, 22292250, doi:10.1175/JCLI4107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

  • Eichler, T., and W. Higgins, 2006: Climatology and ENSO-related variability of North American extratropical cyclone activity. J. Climate, 19, 20762093, doi:10.1175/JCLI3725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., M. Hurwitz, D. Waugh, and A. Butler, 2013: Are the teleconnections of central Pacific and eastern Pacific El Niño distinct in boreal wintertime? Climate Dyn., 41, 18351852, doi:10.1007/s00382-012-1570-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, F. S., J. N. Brown, C. Langlais, S. J. Marsland, A. T. Wittenberg, and N. J. Holbrook, 2014: Effectiveness of the Bjerknes stability index in representing ocean dynamics. Climate Dyn., 43, 23992414, doi:10.1007/s00382-014-2062-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and N. K. Larkin, 1998: El Niño–Southern Oscillation sea surface temperature and wind anomalies, 1946–1993. Rev. Geophys., 36, 353400, doi:10.1029/98RG00715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastie, T., R. Tibshirani, and J. Friedman, 2009: Unsupervised learning. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. T. Hastie, R. Tibshirani, and J. Friedman, Eds., Springer, 485–585.

    • Crossref
    • Export Citation
  • Hewitson, B. C., and R. G. Crane, 2002: Self-organizing maps: Applications to synoptic climatology. Climate Res., 22, 1326, doi:10.3354/cr022013.

  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, doi:10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Infanti, J. M., and B. P. Kirtman, 2016: North American rainfall and temperature prediction response to the diversity of ENSO. Climate Dyn., 46, 30073023, doi:10.1007/s00382-015-2749-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iskandar, I., 2009: Variability of satellite-observed sea surface height in the tropical Indian Ocean: Comparison of EOF and SOM analysis. Makara J. Sci., 13, 173179, doi:10.7454/mss.v13i2.421.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., 2013: How many ENSO flavors can we distinguish?. J. Climate, 26, 48164827, doi:10.1175/JCLI-D-12-00649.1.

  • Johnson, N. C., and Y. Kosaka, 2016: The impact of eastern equatorial Pacific convection on the diversity of boreal winter El Niño teleconnection patterns. Climate Dyn., 47, 37373765, doi:10.1007/s00382-016-3039-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., S. B. Feldstein, and B. Tremblay, 2008: The continuum of Northern Hemisphere teleconnection patterns and a description of the NAO shift with the use of self-organizing maps. J. Climate, 21, 63546371, doi:10.1175/2008JCLI2380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jong, B.-T., M. Ting, and R. Seager, 2016: El Niño’s impact on California precipitation: Seasonality, regionality, and El Niño intensity. Environ. Res. Lett., 11, 054021, doi:10.1088/1748-9326/11/5/054021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 1998: The self-organizing map. Neurocomputing, 21, 16, doi:10.1016/S0925-2312(98)00030-7.

  • Kohonen, T., 2001: Self-Organizing Maps. 3rd ed. Springer, 501 pp.

    • Crossref
    • Export Citation
  • Kohonen, T., J. Hynninen, J. Kangas, and J. Laaksonen, 1995: SOM_PAK: The self-organizing maps program package. Helsinki University of Technology Rep., 27 pp. [Available online at http://www.cis.hut.fi/research/som_pak/som_doc.txt.]

  • Kug, J.-S., and Y. G. Ham, 2011: Are there two types of La Niña? Geophys. Res. Lett., 38, L16704, doi:10.1029/2011GL048237.

  • Kug, J.-S., F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, doi:10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 1997: Interpretation and implications of the observed inter–El Niño variability. J. Climate, 10, 8391, doi:10.1175/1520-0442(1997)010<0083:IAIOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005a: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32, L13705, doi:10.1029/2005GL022738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005b: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, doi:10.1029/2005GL022860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., A. Leetmaa, and M. J. Nath, 2008: Interactions between the responses of North American climate to El Niño–La Niña and to the secular warming trend in the Indian–western Pacific Oceans. J. Climate, 21, 476494, doi:10.1175/2007JCLI1899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leloup, J., Z. Lachkar, J.-P. Boulanger, and S. Thiria, 2007: Detecting decadal changes in ENSO using neural networks. Climate Dyn., 28, 147162, doi:10.1007/s00382-006-0173-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., D. C. Collins, and Z.-Z. Hu, 2013: Linear trends in sea surface temperature of the tropical Pacific Ocean and implications for the El Niño–Southern Oscillation. Climate Dyn., 40, 12231236, doi:10.1007/s00382-012-1331-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., M. K. Tippett, and A. G. Barnston, 2015: Characterizing ENSO coupled variability and its impact on North American seasonal precipitation and temperature. J. Climate, 28, 42314245, doi:10.1175/JCLI-D-14-00508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., C. Li, J. Ling, and Y. Tan, 2015: The relationship between contiguous El Niño and La Niña revealed by self-organizing maps. J. Climate, 28, 81188134, doi:10.1175/JCLI-D-15-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, G.-F., and L.-H. Chen, 2006: Identification of homogeneous regions for regional frequency analysis using the self-organizing map. J. Hydrol., 324, 19, doi:10.1016/j.jhydrol.2005.09.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. H. Weisberg, and C. N. K. Mooers, 2006: Performance evaluation of the self-organizing map for feature extraction. J. Geophys. Res., 111, C05018, doi:10.1029/2006JA011890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Michelangeli, P.-A., R. Vautard, and B. Legras, 1995: Weather regimes: Recurrence and quasi stationarity. J. Atmos. Sci., 52, 12371256, doi:10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2010: Interdecadal modulation of the impact of ENSO on precipitation and temperature over the United States. J. Climate, 23, 36393656, doi:10.1175/2010JCLI3553.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. E. Livezey, 1986: Tropical-extratropical geopotential height teleconnections during the Northern Hemisphere winter. Mon. Wea. Rev., 114, 24882515, doi:10.1175/1520-0493(1986)114<2488:TEGHTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note NCAR/TN-485+STR, 224 pp. [Available online at http://www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf.]

  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 289 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.]

  • Poli, P., and Coauthors, 2013: The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C). ERA Rep. Series 14, 62 pp. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2013/11699-data-assimilation-system-and-initial-performance-evaluation-ecmwf-pilot-reanalysis-20th.pdf.]

  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variation in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Powell, E. C. Kent, and A. Kaplan, 2003: Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, H. L., and F. F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, doi:10.1029/2010GL046031.

  • Reusch, D. B., R. B. Alley, and B. C. Hewitson, 2005: Relative performance of self-organizing maps and principal component analysis in pattern extraction from synthetic climatological data. Polar Geogr., 29, 188212, doi:10.1080/789610199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, A. J., C. Risien, and F. A. Shillington, 2003: Using self-organizing maps to identify patterns in satellite imagery. Prog. Oceanogr., 59, 223239, doi:10.1016/j.pocean.2003.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riddle, E. E., M. B. Stoner, N. C. Johnson, M. L. L’Heureux, D. C. Collins, and S. B. Feldstein, 2013: The impact of the MJO on clusters of wintertime circulation anomalies over the North American region. Climate Dyn., 40, 17491766, doi:10.1007/s00382-012-1493-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North America precipitation and temperature associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, doi:10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudolf, B., A. Becker, U. Schneider, A. Meyer-Christoffer, and M. Ziese, 2010: The new “GPCC full data reanalysis version 5” providing high-quality gridded monthly precipitation data for the global land-surface is public available since December 2010. GPCC Status Rep., 7 pp. [Available online at https://www.dwd.de/DE/leistungen/wzn/publikationen/GPCC_status_report_2010.pdf?__blob=publicationFile&v=2.]

  • Shinoda, T., H. E. Hurlburt, and E. J. Metzger, 2011: Anomalous tropical ocean circulation associated with La Niña Modoki. J. Geophys. Res., 116, C12001, doi:10.1029/2011JC007304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., 1982: The forcing of stationary wave motion by tropical diabatic heating. Quart. J. Roy. Meteor. Soc., 108, 503534, doi:10.1002/qj.49710845703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, A., 2012: Contrasting the flavors of ENSO and related trends in the tropical Pacific Ocean in recent decades. Thèse doctorat, Université Paul Sabatier Toulouse III, 181 pp. [Available online at https://tel.archives-ouvertes.fr/tel-00795552/file/Singh_these.pdf.]

  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, doi:10.1029/2011GL047364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vesanto, J., J. Himberg, E. Alhoniemi, and J. Parhankangas, 2000: SOM toolbox for Matlab 5. Helsinki University of Technology. [Available online at http://www.cis.hut.fi/projects/somtoolbox/.]

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: On “field significance” and the false discovery rate. J. Appl. Meteor. Climatol., 45, 11811189, doi:10.1175/JAM2404.1.

  • Xu, G., T. J. Osborn, A. J. Matthews, and M. M. Joshi, 2015: Different atmospheric moisture divergence responses to extreme and moderate El Niño. Climate Dyn., 47, 393410, doi:10.1007/s00382-015-2844-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, doi:10.1038/nature08316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, B., X. Zhang, H. Lin, and J.-Y. Yu, 2015: Comparison of wintertime North American climate impacts associated with multiple ENSO indices. Atmos.–Ocean, 53, 426445, doi:10.1080/07055900.2015.1079697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S. T. Kim, 2010: Identification of central-Pacific and eastern-Pacific types of ENSO in CMIP3 models. Geophys. Res. Lett., 37, L15705, doi:10.1029/2010GL044082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and Y. Zou, 2013: The enhanced drying effect of central-Pacific El Niño on US winter. Environ. Res. Lett., 8, 014019, doi:10.1088/1748-9326/8/1/014019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., Y. Zou, S. T. Kim, and T. Lee, 2012: The changing impact of El Niño on US winter temperatures. Geophys. Res. Lett., 39, L15702, doi:10.1029/2012GL052483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., and H. M. Yan, 2013: Different types of La Niña events and different responses of the tropical atmosphere. Chin. Sci. Bull., 58, 406415, doi:10.1007/s11434-012-5423-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T., M. P. Hoerling, J. Perlwitz, D.-Z. Sun, and D. Murray, 2011: Physics of U.S. surface temperature response to ENSO. J. Climate, 24, 48744887, doi:10.1175/2011JCLI3944.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., L. Wang, B. Xiang, L. Qi, and J. He, 2015: Impact of two types of La Niña on the NAO during boreal winter. Climate Dyn., 44, 13511366, doi:10.1007/s00382-014-2155-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, Y., J.-Y. Yu, T. Lee, M.-M. Lu, and S. T. Kim, 2014: CMIP5 model simulations of the impacts of the two types of El Niño on the U.S. winter temperature. J. Geophys. Res. Atmos., 119, 30763092, doi:10.1002/2013JD021064.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 732 247 15
PDF Downloads 609 228 13