New Tree-Ring Evidence from the Pyrenees Reveals Western Mediterranean Climate Variability since Medieval Times

Ulf Büntgen Department of Geography, University of Cambridge, Cambridge, United Kingdom
Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland
Global Change Research Centre AS CR v.v.i., Brno, Czech Republic

Search for other papers by Ulf Büntgen in
Current site
Google Scholar
PubMed
Close
,
Paul J. Krusic Department of Geography, University of Cambridge, Cambridge, United Kingdom
Navarino Environmental Observatory, Messenia, Greece
Department of Physical Geography, Stockholm University, Stockholm, Sweden

Search for other papers by Paul J. Krusic in
Current site
Google Scholar
PubMed
Close
,
Anne Verstege Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland

Search for other papers by Anne Verstege in
Current site
Google Scholar
PubMed
Close
,
Gabriel Sangüesa-Barreda Instituto Pirenaico de Ecología, Consejo Superior de Investigaciónes, Zaragoza, Spain

Search for other papers by Gabriel Sangüesa-Barreda in
Current site
Google Scholar
PubMed
Close
,
Sebastian Wagner Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany

Search for other papers by Sebastian Wagner in
Current site
Google Scholar
PubMed
Close
,
J. Julio Camarero Instituto Pirenaico de Ecología, Consejo Superior de Investigaciónes, Zaragoza, Spain

Search for other papers by J. Julio Camarero in
Current site
Google Scholar
PubMed
Close
,
Fredrik Charpentier Ljungqvist Department of History, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Search for other papers by Fredrik Charpentier Ljungqvist in
Current site
Google Scholar
PubMed
Close
,
Eduardo Zorita Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany

Search for other papers by Eduardo Zorita in
Current site
Google Scholar
PubMed
Close
,
Clive Oppenheimer Department of Geography, University of Cambridge, Cambridge, United Kingdom

Search for other papers by Clive Oppenheimer in
Current site
Google Scholar
PubMed
Close
,
Oliver Konter Department of Geography, Johannes Gutenberg University, Mainz, Germany

Search for other papers by Oliver Konter in
Current site
Google Scholar
PubMed
Close
,
Willy Tegel Chair of Forest Growth, Albert-Ludwigs University, Freiburg, Germany

Search for other papers by Willy Tegel in
Current site
Google Scholar
PubMed
Close
,
Holger Gärtner Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland

Search for other papers by Holger Gärtner in
Current site
Google Scholar
PubMed
Close
,
Paolo Cherubini Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland

Search for other papers by Paolo Cherubini in
Current site
Google Scholar
PubMed
Close
,
Frederick Reinig Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland

Search for other papers by Frederick Reinig in
Current site
Google Scholar
PubMed
Close
, and
Jan Esper Department of Geography, Johannes Gutenberg University, Mainz, Germany

Search for other papers by Jan Esper in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Paleoclimatic evidence is necessary to place the current warming and drying of the western Mediterranean basin in a long-term perspective of natural climate variability. Annually resolved and absolutely dated temperature proxies south of the European Alps that extend back into medieval times are, however, mainly limited to measurements of maximum latewood density (MXD) from high-elevation conifers. Here, the authors present the world’s best replicated MXD site chronology of 414 living and relict Pinus uncinata trees found >2200 m above mean sea level (MSL) in the Spanish central Pyrenees. This composite record correlates significantly (p ≤ 0.01) with May–June and August–September mean temperatures over most of the Iberian Peninsula and northern Africa (r = 0.72; 1950–2014). Spanning the period 1186–2014 of the Common Era (CE), the new reconstruction reveals overall warmer conditions around 1200 and 1400, and again after around 1850. The coldest reconstructed summer in 1258 (−4.4°C compared to 1961–90) followed the largest known volcanic eruption of the CE. The twentieth century is characterized by pronounced summer cooling in the 1970s, subsequently rising temperatures until 2003, and a slowdown of warming afterward. Little agreement is found with climate model simulations that consistently overestimate recent summer warming and underestimate preindustrial temperature changes. Interannual–multidecadal covariability with regional hydroclimate includes summer pluvials after large volcanic eruptions. This study demonstrates the relevance of updating MXD-based temperature reconstructions, not only back in time but also toward the present, and emphasizes the importance of comparing temperature and hydroclimatic proxies, as well as model simulations for understanding regional climate dynamics.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Current affiliation: Department of Geography, Masaryk University, Brno, Czech Republic.

Corresponding author: Ulf Büntgen, ulf.buentgen@geog.cam.ac.uk

Abstract

Paleoclimatic evidence is necessary to place the current warming and drying of the western Mediterranean basin in a long-term perspective of natural climate variability. Annually resolved and absolutely dated temperature proxies south of the European Alps that extend back into medieval times are, however, mainly limited to measurements of maximum latewood density (MXD) from high-elevation conifers. Here, the authors present the world’s best replicated MXD site chronology of 414 living and relict Pinus uncinata trees found >2200 m above mean sea level (MSL) in the Spanish central Pyrenees. This composite record correlates significantly (p ≤ 0.01) with May–June and August–September mean temperatures over most of the Iberian Peninsula and northern Africa (r = 0.72; 1950–2014). Spanning the period 1186–2014 of the Common Era (CE), the new reconstruction reveals overall warmer conditions around 1200 and 1400, and again after around 1850. The coldest reconstructed summer in 1258 (−4.4°C compared to 1961–90) followed the largest known volcanic eruption of the CE. The twentieth century is characterized by pronounced summer cooling in the 1970s, subsequently rising temperatures until 2003, and a slowdown of warming afterward. Little agreement is found with climate model simulations that consistently overestimate recent summer warming and underestimate preindustrial temperature changes. Interannual–multidecadal covariability with regional hydroclimate includes summer pluvials after large volcanic eruptions. This study demonstrates the relevance of updating MXD-based temperature reconstructions, not only back in time but also toward the present, and emphasizes the importance of comparing temperature and hydroclimatic proxies, as well as model simulations for understanding regional climate dynamics.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Current affiliation: Department of Geography, Masaryk University, Brno, Czech Republic.

Corresponding author: Ulf Büntgen, ulf.buentgen@geog.cam.ac.uk
Save
  • Anchukaitis, K. J., and Coauthors, 2012: Tree rings and volcanic cooling. Nat. Geosci., 5, 836837, doi:10.1038/ngeo1645.

  • Auchmann, R., S. Brönnimann, L. Breda, M. Bühler, R. Spadin, and A. Stickler, 2012: Extreme climate, not extreme weather: The summer of 1816 in Geneva, Switzerland. Climate Past, 8, 325335, doi:10.5194/cp-8-325-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auchmann, R., and Coauthors, 2013: Impact of volcanic stratospheric aerosols on diurnal temperature range (DTR) in Europe over the past 200 years: Observations versus model simulations. J. Geophys. Res. Atmos., 118, 90649077, doi:10.1002/jgrd.50759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barreiro-Lostres, F., A. Moreno, S. Giralt, M. Caballero, and B. Valero-Garcés, 2014: Climate, palaeohydrology and land use change in the Central Iberian Range over the last 1.6 kyr: The La Parra Lake record. Holocene, 24, 11771192, doi:10.1177/0959683614540960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basler, D., and C. Körner, 2014: Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species. Tree Physiol., 34, 377388, doi:10.1093/treephys/tpu021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benito, G., A. Díez-Herrero, and M. Fernández de Villalta, 2003: Magnitude and frequency of flooding in the Tagus basin (central Spain) over the last millennium. Climatic Change, 58, 171192, doi:10.1023/A:1023417102053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bothe, O., J. H. Jungclaus, and D. Zanchettin, 2013: Consistency of the multi-model CMIP5/PMIP3-past1000 ensemble. Climate Past, 9, 24712487, doi:10.5194/cp-9-2471-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briffa, K. R., P. D. Jones, F. H. Schweingruber, and T. J. Osborn, 1998: Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature, 393, 450455, doi:10.1038/30943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briffa, K. R., T. J. Osborn, and F. H. Schweingruber, 2004: Large-scale temperature inferences from tree rings: A review. Global Planet. Change, 40, 1126, doi:10.1016/S0921-8181(03)00095-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brugnara, Y., and Coauthors, 2015: A collection of sub-daily pressure and temperature observations for the early instrumental period with a focus on the “year without a summer” 1816. Climate Past, 11, 10271047, doi:10.5194/cp-11-1027-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunde, A., U. Büntgen, J. Ludescher, J. Luterbacher, and H. von Storch, 2013: Is there memory in precipitation? Nat. Climate Change, 3, 174175, doi:10.1038/nclimate1830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Büntgen, U., D. Frank, H. Grudd, and J. Esper, 2008: Long-term summer temperature variations in the Pyrenees. Climate Dyn., 31, 615631, doi:10.1007/s00382-008-0390-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Büntgen, U., D. Frank, V. Trouet, and J. Esper, 2010: Diverse climate sensitivity of Mediterranean tree-ring width and density. Trees, 24, 261273, doi:10.1007/s00468-009-0396-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Büntgen, U., and Coauthors, 2012a: Drought-induced decline in Mediterranean truffle harvest. Nat. Climate Change, 2, 827829, doi:10.1038/nclimate1733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Büntgen, U., D. Frank, T. Neuenschwander, and J. Esper, 2012b: Fading temperature sensitivity of Alpine tree growth at its Mediterranean margin and associated effects on large-scale climate reconstructions. Climatic Change, 114, 651666, doi:10.1007/s10584-012-0450-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Büntgen, U., and Coauthors, 2013: Declining pine growth in central Spain coincides with increasing diurnal temperature range since the 1970s. Global Planet. Change, 107, 177185, doi:10.1016/j.gloplacha.2013.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Büntgen, U., and Coauthors, 2015a: Long-term irrigation effects on Spanish holm oak growth and its black truffle symbiont. Agric. Ecosyst. Environ., 202, 148159, doi:10.1016/j.agee.2014.12.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Büntgen, U., S. Egli, J. D. Galván, J. M. Diez, J. Aldea, J. Latorre, and F. Martínez-Peña, 2015b: Drought-induced changes in the phenology, productivity and diversity of Spanish fungi. Fungal Ecol., 16, 618, doi:10.1016/j.funeco.2015.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Büntgen, U., and Coauthors, 2015c: Tree-ring amplification of the early-nineteenth century summer cooling in central Europe. J. Climate, 28, 52725288, doi:10.1175/JCLI-D-14-00673.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Büntgen, U., and Coauthors, 2016: Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci., 9, 231236, doi:10.1038/ngeo2652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Büntgen, U., and Coauthors, 2017: Reply to 'Limited late antique cooling.' Nat. Geosci., 10, 243, doi:10.1038/ngeo2927.

  • Bürger, G., I. Fast, and U. Cubasch, 2006: Climate reconstruction by regression—32 variations on a theme. Tellus, 58A, 227235, doi:10.1111/j.1600-0870.2006.00164.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camarero, J. J., J. Guerrero-Campo, and E. Gutiérrez, 1998: Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the central Spanish Pyrenees. Arct. Alp. Res., 30, 110, doi:10.2307/1551739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camarero, J. J., J. M. Olano, and A. Parras, 2010: Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol., 185, 471480, doi:10.1111/j.1469-8137.2009.03073.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chree, C., 1913: Some phenomena of sunspots and of terrestrial magnetism at Kew Observatory. Philos. Trans. Roy. Soc. London, 212, 75116.

    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2011: Reconstructing the NH mean temperature: Can underestimation of trends and variability be avoided? J. Climate, 24, 674692, doi:10.1175/2010JCLI3646.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., and F. C. Ljungqvist, 2017: Challenges and perspectives for large-scale temperature reconstructions of the past two millennia. Rev. Geophys., 55, 4096, doi:10.1002/2016RG000521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., K. J. Anchukaitis, R. Touchan, D. M. Meko, and E. R. Cook, 2016: Spatiotemporal drought variability in the Mediterranean over the last 900 years. J. Geophys. Res. Atmos., 121, 20602074, doi:10.1002/2015JD023929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., and K. Peters, 1981: The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull., 41, 4553.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., and K. Peters, 1997: Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene, 7, 361370, doi:10.1177/095968369700700314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., K. R. Briffa, D. M. Meko, D. A. Graybill, and G. Funkhouser, 1995: The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene, 5, 229237, doi:10.1177/095968369500500211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., and Coauthors, 2015: Old World megadroughts and pluvials during the Common Era. Sci. Adv., 1, e1500561, doi:10.1126/sciadv.1500561.

  • Corella, J. P., B. L. Valero-Garcés, S. M. Vicente-Serrano, A. Brauer, and G. Benito, 2016: Three millennia of heavy rainfalls in western Mediterranean: Frequency, seasonality and atmospheric drivers. Sci. Rep., 6, 38206, doi:10.1038/srep38206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowley, T. J., 2000: Causes of climate change over the past 1000 years. Science, 289, 270277, doi:10.1126/science.289.5477.270.

  • Cuny, H. E., C. B. Rathgeber, D. Frank, P. Fonti, and M. Fournier, 2014: Kinetics of tracheid development explain conifer tree-ring structure. New Phytol., 203, 12311241, doi:10.1111/nph.12871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuny, H. E., and Coauthors, 2015: Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants, 1, 15160, doi:10.1038/nplants.2015.160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Arrigo, R. D., R. Wilson, and A. Tudhope, 2009: The impact of volcanic forcing on tropical temperatures during the past four centuries. Nat. Geosci., 2, 5156, doi:10.1038/ngeo393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Andrés, E. G., J. J. Camarero, and U. Büntgen, 2015: Complex climate constraints of upper treeline formation in the Pyrenees. Trees, 29, 941952, doi:10.1007/s00468-015-1176-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deslauriers, A., H. Morin, and Y. Begin, 2003: Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Can. J. For. Res., 33, 190200, doi:10.1139/x02-178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deslauriers, A., J. G. Huang, L. Balducci, M. Beaulieu, and S. Rossi, 2016: The contribution of carbon and water in modulating wood formation in black spruce saplings. Plant Physiol., 170, 20722084, doi:10.1104/pp.15.01525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorado-Liñán, I., and Coauthors, 2012: Estimating 750 years of temperature variations and uncertainties in the Pyrenees by tree ring reconstructions and climate simulations. Climate Past, 8, 919933, doi:10.5194/cp-8-919-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorado-Liñán, I., E. Zorita, J. F. González-Rouco, I. Heinrich, F. Campello, E. Muntán, L. Andreu-Hayles, and E. Gutiérrez, 2015: Eight-hundred years of summer temperature variations in the southeast of the Iberian Peninsula reconstructed from tree rings. Climate Dyn., 44, 7593, doi:10.1007/s00382-014-2348-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Driscoll, S., A. Bozzo, L. J. Gray, A. Robock, and G. Stenchikov, 2012: Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J. Geophys. Res., 117, D17105, doi:10.1029/2012JD017607.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth system model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, doi:10.1007/s00382-012-1636-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and Coauthors, 1997: Maximum and minimum temperature trends for the globe. Science, 277, 364367, doi:10.1126/science.277.5324.364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., R. Seager, M. A. Cane, E. R. Cook, and G. H. Haug, 2008: Volcanoes and ENSO over the past millennium. J. Climate, 21, 31343148, doi:10.1175/2007JCLI1884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eschbach, W., P. Nogler, E. Schär, and F. Schweingruber, 1995: Technical advances in the radiodensitometrical determination of wood density. Dendrochronologia, 13, 155168.

    • Search Google Scholar
    • Export Citation
  • Esper, J., E. R. Cook, P. J. Krusic, K. Peters, and F. H. Schweingruber, 2003: Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Res., 59, 8198.

    • Search Google Scholar
    • Export Citation
  • Esper, J., D. C. Frank, R. J. S. Wilson, and K. R. Briffa, 2005: Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys. Res. Lett., 32, L07711, doi:10.1029/2004GL021236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esper, J., D. C. Frank, U. Büntgen, A. Verstege, J. Luterbacher, and E. Xoplaki, 2007: Long-term drought severity variations in Morocco. Geophys. Res. Lett., 34, L17702, doi:10.1029/2007GL030844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esper, J., U. Büntgen, J. Luterbacher, and P. J. Krusic, 2013a: Testing the hypothesis of post-volcanic missing rings in temperature sensitive dendrochronological data. Dendrochronologia, 31, 216222, doi:10.1016/j.dendro.2012.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esper, J., L. Schneider, P. J. Krusic, J. Luterbacher, U. Büntgen, M. Timonen, F. Sirocko, and E. Zorita, 2013b: European summer temperature response to annually dated volcanic eruptions over the past nine centuries. Bull. Volcanol., 75, 736750, doi:10.1007/s00445-013-0736-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esper, J., O. Konter, P. J. Krusic, M. Saurer, S. Holzkämper, and U. Büntgen, 2015: Long-term summer temperature variations in the Pyrenees from detrended stable carbon isotopes. Geochronometria, 42, 5359, doi:10.1515/geochr-2015-0006.

    • Crossref