Investigating Nonlinear Dependence between Climate Fields

Matt J. Fischer Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia

Search for other papers by Matt J. Fischer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Earth’s ice–ocean–atmosphere system exhibits nonlinear responses, such as the difference in the magnitude of the atmospheric response to positive or negative ocean or sea ice anomalies. Two classes of methods that have previously been used to investigate the nonlinear dependence between climate fields are kernel methods and neural network methods. In this paper, a third methodology is introduced: gradient-based kernel dimension reduction. Gradient-based kernel methods are an extension of conventional kernel methods, but gradient-based methods focus on the directional derivatives of the regression surface between two fields. Specifically, a new gradient-based method is developed here: gradient kernel canonical correlation analysis (gKCCA). In gKCCA, the canonical directions maximize the directional derivatives between the predictor field and the response field, while the canonical components of the response field maximize the correlation with a nonlinear augmentation of the predictor canonical components. Gradient-based kernel methods have several advantages: their components can be directly related to the original fields (unlike in conventional kernel methods), and the projection vectors are determined by analytical solution (unlike in neural networks). Here gKCCA is applied to the question of nonlinear coupling between high-frequency (2–3 years) and low-frequency (4–6 years) modes in the Pacific Ocean. The leading gKCCA subspace shows a significant nonlinear coupling between the low-pass and high-pass fields. The paper also shows that the results of gKCCA are robust to different levels of noise and different kernel functions.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0563.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matt J. Fischer, mjf@ansto.gov.au

Abstract

The Earth’s ice–ocean–atmosphere system exhibits nonlinear responses, such as the difference in the magnitude of the atmospheric response to positive or negative ocean or sea ice anomalies. Two classes of methods that have previously been used to investigate the nonlinear dependence between climate fields are kernel methods and neural network methods. In this paper, a third methodology is introduced: gradient-based kernel dimension reduction. Gradient-based kernel methods are an extension of conventional kernel methods, but gradient-based methods focus on the directional derivatives of the regression surface between two fields. Specifically, a new gradient-based method is developed here: gradient kernel canonical correlation analysis (gKCCA). In gKCCA, the canonical directions maximize the directional derivatives between the predictor field and the response field, while the canonical components of the response field maximize the correlation with a nonlinear augmentation of the predictor canonical components. Gradient-based kernel methods have several advantages: their components can be directly related to the original fields (unlike in conventional kernel methods), and the projection vectors are determined by analytical solution (unlike in neural networks). Here gKCCA is applied to the question of nonlinear coupling between high-frequency (2–3 years) and low-frequency (4–6 years) modes in the Pacific Ocean. The leading gKCCA subspace shows a significant nonlinear coupling between the low-pass and high-pass fields. The paper also shows that the results of gKCCA are robust to different levels of noise and different kernel functions.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0563.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matt J. Fischer, mjf@ansto.gov.au

Supplementary Materials

    • Supplemental Materials (PDF 566.03 KB)
Save
  • Arenas-García, J., K. B. Petersen, G. Camps-Valls, and L. K. Hansen, 2013: Kernel multivariate analysis framework for supervised subspace learning. IEEE Signal Process. Mag., 30, 1629, doi:10.1109/MSP.2013.2250591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., 1991: The interaction of multiple time scales in the tropical climate system. J. Climate, 4, 269285, doi:10.1175/1520-0442(1991)004<0269:TIOMTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bejarano, L., and F.-F. Jin, 2008: Coexistence of equatorial coupled modes of ENSO. J. Climate, 21, 30513067, doi:10.1175/2007JCLI1679.1.

  • Bretherton, C., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate. J. Climate, 5, 541560, doi:10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, A. J., 2006: Nonlinear principal predictor analysis: Application to the Lorenz system. J. Climate, 19, 579589, doi:10.1175/JCLI3634.1.

  • Cannon, A. J., 2009: Negative ridge regression parameters for improving the covariance structure of multivariate linear downscaling models. Int. J. Climatol., 29, 761769, doi:10.1002/joc.1737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, A. J., and W. W. Hsieh, 2008: Robust nonlinear canonical correlation analysis: application to seasonal climate forecasting. Nonlinear Processes Geophys., 15, 221232, doi:10.5194/npg-15-221-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, C., and S. Nigam, 1999: Weighting of geophysical data in principal component analysis. J. Geophys. Res., 104, 16 92516 928, doi:10.1029/1999JD900234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., and M. K. Tippett, 2008: Predictable components and singular vectors. J. Atmos. Sci., 65, 16661678, doi:10.1175/2007JAS2401.1.

  • Evans, M. N., J. E. Smerdon, A. Kaplan, S. E. Tolwinski-Ward, and J. F. González-Rouco, 2014: Climate field reconstruction uncertainty arising from multivariate and nonlinear properties of predictors. Geophys. Res. Lett., 41, 91279134, doi:10.1002/2014GL062063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukumizu, K., and C. Leng, 2014: Gradient-based kernel dimension reduction for regression. J. Amer. Stat. Assoc., 109, 359370, doi:10.1080/01621459.2013.838167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsieh, W. W., 2001: Nonlinear canonical correlation analysis of the tropical Pacific climate variability using a neural network approach. J. Climate, 14, 25282539, doi:10.1175/1520-0442(2001)014<2528:NCCAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2016: Further exploring and quantifying uncertainties for Extended Reconstructed Sea Surface Temperature (ERSST) version 4 (v4). J. Climate, 29, 31193142, doi:10.1175/JCLI-D-15-0430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, Y., S. Jo, J. Lee, H.-S. Oh, and H.-S. Kang, 2012: An improvement of seasonal climate prediction by regularized canonical correlation analysis. Int. J. Climatol., 32, 15031512, doi:10.1002/joc.2368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lima, C. H. R., U. Lall, T. Jebara, and A. G. Barnston, 2009: Statistical prediction of ENSO from subsurface sea temperature using a nonlinear dimensionality reduction. J. Climate, 22, 45014519, doi:10.1175/2009JCLI2524.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez-Gómez, E., M. T. Richards, and D. S. P. Richards, 2014: Distance correlation measures for discovering associations in large astrophysical databases. Astrophys. J., 781, 39, doi:10.1088/0004-637X/781/1/39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., and A. Dai, 2004: The spatial and temporal structure of ENSO nonlinearity. J. Climate, 17, 30263036, doi:10.1175/1520-0442(2004)017<3026:TSATSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2017: Extended Reconstructed Sea Surface Temperature, version 4. NOAA/OAR/ESRL/PSD, accessed 16 January 2017. [Available online at http://www.esrl.noaa.gov/psd/data/gridded.]

  • Ortiz Beviá, M. J., I. Pérez-González, F. J. Alvarez-García, and A. Gershunov, 2010: Nonlinear estimation of El Niño impact on the North Atlantic winter. J. Geophys. Res., 115, D21123, doi:10.1029/2009JD013387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramírez, M. C., N. J. Ferreira, and H. F. C. Velho, 2006: Linear and nonlinear statistical downscaling for rainfall forecasting over southeastern Brazil. Wea. Forecasting, 21, 969989, doi:10.1175/WAF981.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roulston, M. S., and J. D. Neelin, 2003: Nonlinear coupling between modes in a low-dimensional model of ENSO. Atmos.–Ocean, 41, 217231, doi:10.3137/ao.410303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreiber, T., and A. Schmitz, 2000: Surrogate time series. Physica D, 142, 346382, doi:10.1016/S0167-2789(00)00043-9.

  • Schreier, P. J., 2008: A unifying discussion of correlation analysis for complex random vectors. IEEE Trans. Signal Process., 56, 13271336, doi:10.1109/TSP.2007.909054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, D. W., 2015: The curse of dimensionality and dimension reduction. Multivariate Density Estimation: Theory, Practice, and Visualization, D. W. Scott, Ed., John Wiley and Sons, 217–240, doi:10.1002/9781118575574.ch7.

    • Crossref
    • Export Citation
  • Smerdon, J. E., A. Kaplan, D. Chang, and M. N. Evans, 2011: A pseudoproxy evaluation of the CCA and RegEM methods for reconstructing climate fields of the last millennium. J. Climate, 24, 12841309, doi:10.1175/2010JCLI4110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smoliak, B. V., J. M. Wallace, P. Lin, and Q. Fu, 2015: Dynamical adjustment of the Northern Hemisphere surface air temperature field: Methodology and application to observations. J. Climate, 28, 16131629, doi:10.1175/JCLI-D-14-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., T. DelSole, S. J. Mason, and A. G. Barnston, 2008: Regression-based methods for finding coupled patterns. J. Climate, 21, 43844398, doi:10.1175/2008JCLI2150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolwinski-Ward, S. E., M. N. Evans, M. K. Hughes, and K. J. Anchukaitis, 2011: An efficient forward model of the climate controls on interannual variation in tree-ring width. Climate Dyn., 36, 24192439, doi:10.1007/s00382-010-0945-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2008: Improved statistical seasonal forecasts using extended training data. Int. J. Climatol., 28, 15891598, doi:10.1002/joc.1661.

  • Wu, A., W. W. Hsieh, and A. Shabbar, 2005: The nonlinear patterns of North American winter temperature and precipitation associated with ENSO. J. Climate, 18, 17361752, doi:10.1175/JCLI3372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X.-Q., Q. Xie, and S.-S. Huang, 1997: Unstable interannual oscillation modes in a linearized coupled ocean-atmosphere model and their association with ENSO. Meteor. Atmos. Phys., 62, 161177, doi:10.1007/BF01029700.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 230 58 4
PDF Downloads 171 37 3