In Search of Fingerprints of the Recent Intensification of the Ocean Water Cycle

Nadya T. Vinogradova Cambridge Climate Institute, Boston, Massachusetts

Search for other papers by Nadya T. Vinogradova in
Current site
Google Scholar
PubMed
Close
and
Rui M. Ponte Atmospheric and Environmental Research, Lexington, Massachusetts

Search for other papers by Rui M. Ponte in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Unprecedented changes in Earth’s water budget and a recent boom in salinity observations prompted the use of long-term salinity trends to fingerprint the amount of freshwater entering and leaving the oceans (the ocean water cycle). Here changes in the ocean water cycle in the past two decades are examined to evaluate whether the rain-gauge notion can be extended to shorter time scales. Using a novel framework it is demonstrated that there have been persistent changes (defined as significant trends) in both salinity and the ocean water cycle in many ocean regions, including the subtropical gyres in both hemispheres, low latitudes of the tropical Pacific, the North Atlantic Subpolar Gyre, and the Arctic Ocean. On average, the ocean water cycle has amplified by approximately 5% since 1993, but strong regional variations exist (as well as dependency on the surface freshwater flux products chosen). Despite an intensified ocean water cycle in the last two decades, changes in surface salinity do not follow expected patterns of amplified salinity contrasts, challenging the perception that if it rains more the seas always get fresher and if it evaporates more the seas always get saltier. These findings imply a time of emergence of anthropogenic hydrological signals shorter in surface freshwater fluxes than in surface salinity and point to the importance of ocean circulation, salt transports, and natural climate variability in shaping patterns of decadal change in surface salinity. Therefore, the use of salinity measurements in conjunction with ocean salt fluxes can provide a more meaningful way of fingerprinting changes in the global water cycle on decadal time scales.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nadya T. Vinogradova, nadya@camclimate.org

Abstract

Unprecedented changes in Earth’s water budget and a recent boom in salinity observations prompted the use of long-term salinity trends to fingerprint the amount of freshwater entering and leaving the oceans (the ocean water cycle). Here changes in the ocean water cycle in the past two decades are examined to evaluate whether the rain-gauge notion can be extended to shorter time scales. Using a novel framework it is demonstrated that there have been persistent changes (defined as significant trends) in both salinity and the ocean water cycle in many ocean regions, including the subtropical gyres in both hemispheres, low latitudes of the tropical Pacific, the North Atlantic Subpolar Gyre, and the Arctic Ocean. On average, the ocean water cycle has amplified by approximately 5% since 1993, but strong regional variations exist (as well as dependency on the surface freshwater flux products chosen). Despite an intensified ocean water cycle in the last two decades, changes in surface salinity do not follow expected patterns of amplified salinity contrasts, challenging the perception that if it rains more the seas always get fresher and if it evaporates more the seas always get saltier. These findings imply a time of emergence of anthropogenic hydrological signals shorter in surface freshwater fluxes than in surface salinity and point to the importance of ocean circulation, salt transports, and natural climate variability in shaping patterns of decadal change in surface salinity. Therefore, the use of salinity measurements in conjunction with ocean salt fluxes can provide a more meaningful way of fingerprinting changes in the global water cycle on decadal time scales.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nadya T. Vinogradova, nadya@camclimate.org
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ballabrera-Poy, J., R. Murtugudde, and A. J. Busalacchi, 2002: On the potential impact of sea surface salinity observations on ENSO predictions. J. Geophys. Res., 107, 8007, doi:10.1029/2001JC000834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beranger, K., B. Barnier, S. Gulev, and M. Crépon, 2006: Comparing 20 years of precipitation estimates from different sources over the World Ocean. Ocean Dyn., 56, 104138, doi:10.1007/s10236-006-0065-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bingham, F. M., G. R. Foltz, and M. J. McPhaden, 2012: Characteristics of the seasonal cycle of surface layer salinity in the global ocean. Ocean Sci., 8, 915929, doi:10.5194/os-8-915-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, F., and S. Bachman, 2015: Isohaline salinity budget of the North Atlantic salinity maximum. J. Phys. Oceanogr., 45, 724736, doi:10.1175/JPO-D-14-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., and J. Marshall, 2016: Observations, inferences, and mechanisms of Atlantic meridional overturning circulation variability: A review. Rev. Geophys., 54, 563, doi:10.1002/2015RG000493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calafat, F. M., and D. P. Chambers, 2013: Quantifying recent acceleration in sea level unrelated to internal climate variability. Geophys. Res. Lett., 40, 36613666, doi:10.1002/grl.50731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campin, J.-M., A. Adcroft, C. Hill, and J. Marshall, 2004: Conservation of properties in a free surface model. Ocean Modell., 6, 221244, doi:10.1016/S1463-5003(03)00009-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaudhuri, A., R. M. Ponte, and G. Forget, 2016: Impact of uncertainties in atmospheric boundary conditions on ocean model solutions. Ocean Modell., 100, 96108, doi:10.1016/j.ocemod.2016.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colman, R. A., 2015: Climate radiative feedbacks and adjustments at the Earth’s surface. J. Geophys. Res. Atmos., 120, 31733182, doi:10.1002/2014JD022896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011: Drought under global warming: A review. Wiley Interdiscip. Rev.: Climate Change, 2, 4565, doi:10.1002/wcc.81.

  • Dai, A., 2012: The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Climate Dyn., 41, 633646, doi:10.1007/s00382-012-1446-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delcroix, T. M., and J. Picaut, 1998: Zonal displacement of the western equatorial Pacific “fresh pool.” J. Geophys. Res., 103, 10871098, doi:10.1029/97JC01912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delcroix, T. M., and M. J. McPhaden, 2002: Interannual sea surface salinity and temperature changes in the western Pacific warm pool during 1992–2000. J. Geophys. Res., 107, 8002, doi:10.1029/2001JC000862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S. P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, doi:10.1146/annurev-marine-120408-151453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in Community Climate System Model version 4. J. Climate, 25, 26222651, doi:10.1175/JCLI-D-11-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., 2015: Ocean salinity and the global water cycle. Oceanography, 28, 2031, doi:10.5670/oceanog.2015.03.

  • Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362, doi:10.1175/2010JCLI3377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458, doi:10.1126/science.1212222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., T. Lee, N. T. Vinogradova, and D. Stammer, 2016: Keeping the lights on for global ocean salinity observation. Nat. Climate Change, 6, 228231, doi:10.1038/nclimate2946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, doi:10.1029/2005GL023272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. A. Renwick, M. J. Salinger, and A. B. Mullan, 2002: Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett., 29, 211214, doi:10.1029/2001GL014201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Camping, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, doi:10.5194/gmd-8-3071-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment (WOCE). J. Climate, 16, 696705, doi:10.1175/1520-0442(2003)016<0696:LSOHAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspar, P., Y. Gregoris, and J. M. Lefevre, 1990: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and long-term upper ocean study site. J. Geophys. Res., 95, 16 17916 193, doi:10.1029/JC095iC09p16179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gierach, M. M., J. Vazquez-Cuervo, T. Lee, and V. M. Tsontos, 2013: Aquarius and SMOS detect effects of an extreme Mississippi River flooding event in the Gulf of Mexico. Geophys. Res. Lett., 40, 51885193, doi:10.1002/grl.50995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2015: Oceanic and terrestrial sources of continental precipitation. Rev. Geophys., 50, RG4003, doi:10.1029/2012RG000389.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., E.-S. Im, E. Coppola, N. S. Diffenbaugh, X. J. Gao, L. Mariotti, and Y. Shi, 2011: Higher hydroclimatic intensity with global warming. J. Climate, 24, 53095324, doi:10.1175/2011JCLI3979.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 2001: Interocean exchange. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 303–314.

    • Crossref
    • Export Citation
  • Gordon, A. L., 2016: The marine hydrological cycle: The ocean’s floods and droughts. Geophys. Res. Lett., 43, 76497652, doi:10.1002/2016GL070279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., C. F. Giulivi, J. Busecke, and F. M. Bingham, 2015: Differences among subtropical surface salinity patterns. Oceanography, 28, 3239, doi:10.5670/oceanog.2015.02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greve, P., and S. I. Seneviratne, 2015: Assessment of future changes in water availability and aridity. Geophys. Res. Lett., 42, 54935499, doi:10.1002/2015GL064127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S., R. Pacanowski, M. Schmidt, and V. Balaji, 2001: Tracer conservation with an explicit free surface method for z-coordinate ocean models. Mon. Wea. Rev., 129, 10811098, doi:10.1175/1520-0493(2001)129<1081:TCWAEF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grist, J. P., and S. A. Josey, 2003: Inverse analysis adjustment of the SOC air–sea flux climatology using ocean heat transport constraints. J. Climate, 16, 32743295, doi:10.1175/1520-0442(2003)016<3274:IAAOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hackert, E., J. Ballabrera-Poy, A. J. Busalacchi, R.-H. Zhang, and R. Murtugudde, 2011: Impact of sea surface salinity assimilation on coupled forecasts in the tropical Pacific. J. Geophys. Res., 116, C05009, doi:10.1029/2010JC006708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., and P. B. Rhines, 2004: Decline of subpolar North Atlantic circulation during the 1990s. Science, 304, 555559, doi:10.1126/science.1094917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasson, A., T. Delcroix, and R. Dussin, 2013: An assessment of the mixed layer salinity budget in the tropical Pacific Ocean: Observations and modelling (1990–2009). Ocean Dyn., 63, 179194, doi:10.1007/s10236-013-0596-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helm, K. P., N. L. Bindoff, and J. A. Church, 2010: Changes in the global hydrological-cycle inferred from ocean salinity. Geophys. Res. Lett., 37, L18701, doi:10.1029/2010GL044222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henley, B. J., J. Gergis, D. J. Karoly, S. B. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the interdecadal Pacific oscillation. Climate Dyn., 45, 30773090, doi:10.1007/s00382-015-2525-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosoda, S., T. Suga, N. Shikama, and K. Mizuno, 2009: Global surface layer salinity change detected by Argo and its implication for hydrological cycle intensification. J. Oceanogr., 65, 579586, doi:10.1007/s10872-009-0049-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1993: Real freshwater flux as a natural boundary condition for the salinity balance and thermohaline circulation forced by evaporation and precipitation. J. Phys. Oceanogr., 23, 24282446, doi:10.1175/1520-0485(1993)023<2428:RFFAAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., 2006: Evidence for intensification of global water cycle: Review and synthesis. J. Hydrol., 319, 8395, doi:10.1016/j.jhydrol.2005.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.004.

    • Crossref
    • Export Citation
  • Josey, S. A., S. Gulev, and L. Yu, 2013: Exchanges through the ocean surface. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al., Eds., International Geophysics Series, Vol. 103, Academic Press, 115–140, doi:10.1016/B978-0-12-391851-2.00005-2.

    • Crossref
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and G. S. E. Lagerloef, 2015: Salinity fronts in the tropical Pacific Ocean. J. Geophys. Res. Oceans, 120, 10961106, doi:10.1002/2014JC010114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsman, C. A., and G. J. van Oldenborgh, 2011: Tracing the upper oceans “missing heat.” Geophys. Res. Lett., 38, L14610, doi:10.1029/2011GL048417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufmann, R. K., H. Kauppib, M. L. Mann, and J. H. Stock, 2011: Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc. Natl. Acad. Sci. USA, 108, 11 79011 793, doi:10.1073/pnas.1102467108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-B., I. Fukumori, and T. Lee, 2006: The closure of the ocean mixed layer temperature budget using level-coordinate model fields. J. Atmos. Oceanic Technol., 23, 840853, doi:10.1175/JTECH1883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köhl, A., M. S. Martins, and D. Stammer, 2014: Impact of assimilating surface salinity from SMOS on ocean circulation estimates. J. Geophys. Res. Oceans, 119, 54495464, doi:10.1002/2014JC010040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lagerloef, G., 1995: Interdecadal variations in the Alaska Gyre. J. Phys. Oceanogr., 25, 22422258, doi:10.1175/1520-0485(1995)025<2242:IVITAG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lagerloef, G., 2012: Satellite mission monitors ocean surface salinity. Eos, Trans. Amer. Geophys. Union, 93, 233–234, doi:10.1029/2012EO250001.

  • Lago, V. S., S. Wijffels, P. Durack, J. Church, N. Bindoff, and S. Marsland, 2015: Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes. J. Climate, 29, 55755588, doi:10.1175/JCLI-D-15-0519.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., G. Lagerloef, M. M. Gierach, H.-Y. Kao, S. Yueh, and K. Dohan, 2012: Aquarius reveals salinity structure of tropical instability waves. Geophys. Res. Lett., 39, L12610, doi:10.1029/2012GL052232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., S. Lee, and B. Lyon, 2013: Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Climate Change, 3, 571576, doi:10.1038/nclimate1840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., R. W. Schmitt, C. C. Ummenhofer, and K. B. Karnauskas, 2016: Implications of North Atlantic sea surface salinity for summer precipitation over the U.S. Midwest: Mechanisms and predictive value. J. Climate, 29, 31433159, doi:10.1175/JCLI-D-15-0520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindstrom, E., F. Bryan, and R. Schmitt, 2015: SPURS: Salinity Processes in the Upper-Ocean Regional Study—the North Atlantic experiment. Oceanography, 28, 1419, doi:10.5670/oceanog.2015.01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S. C., C. Fu, C. J. Shiu, J. P. Chen, and F. Wu, 2009: Temperature dependence of global precipitation extremes. Geophys. Res. Lett., 36, L17702, doi:10.1029/2009GL040218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. T., and W. Tang, 2005: Estimating moisture transport over oceans using space-based observations. J. Geophys. Res., 110, D10101, doi:10.1029/2004JD005300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic and non-hydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, doi:10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. S. Gupta, and M. H. England, 2012: Constraining wind stress products with sea surface height observations and implications for Pacific Ocean sea level trend attribution. J. Climate, 25, 81648176, doi:10.1175/JCLI-D-12-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, J. Y. Fasullo, A. Hu, and K. E. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1, 360364, doi:10.1038/nclimate1229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mieruch, S., M. Schröder, S. Noël, and J. Schulz, 2014: Comparison of decadal global water vapor changes derived from independent satellite time series. J. Geophys. Res. Atmos., 119, 12 48912 499, doi:10.1002/2014JD021588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., S. Salo, and J. M. Adams, 1999: Salinity signature of the Pacific decadal oscillation. Geophys. Res. Lett., 26, 13371340, doi:10.1029/1999GL900241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., P. J. Gleckler, T. P. Barnett, B. D. Santer, and P. J. Durack, 2012: The fingerprint of human-induced changes in the ocean’s salinity and temperature fields. Geophys. Res. Lett., 39, L21704, doi:10.1029/2012GL053389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., and N. T. Vinogradova, 2016: An assessment of basic processes controlling mean surface salinity over the global ocean. Geophys. Res. Lett., 43, 70527058, doi:10.1002/2016GL069857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T. D., and J. Y. Yu, 2014: ENSO indices from sea surface salinity observed by Aquarius and Argo. J. Oceanogr., 70, 367375, doi:10.1007/s10872-014-0238-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T. D., S. Gao, and I. Fukumori, 2011: What governs the North Atlantic salinity maximum in a global GCM? Geophys. Res. Lett., 38, L07602, doi:10.1029/2011GL046757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reul, N., and Coauthors, 2014: Sea surface salinity observations from space with the SMOS satellite: A new means to monitor the marine branch of the water cycle. Surv. Geophys., 35, 681722, doi:10.1007/s10712-013-9244-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2015: The observed state of the water cycle in the early twenty-first century. J. Climate, 28, 82898318, doi:10.1175/JCLI-D-14-00555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Coauthors, 2009: Argo: The challenge of continuing 10 years of progress. Oceanography, 22, 4655, doi:10.5670/oceanog.2009.65.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roullet, G., and G. Madec, 2000: Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models. J. Geophys. Res., 105, 23 92723 942, doi:10.1029/2000JC900089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salisbury, J., and Coauthors, 2015: How can present and future satellite missions support scientific studies that address ocean acidification? Oceanography, 28, 108121, doi:10.5670/oceanog.2015.35.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarafanov, A., A. Falina, A. Sokov, and A. Demidov, 2008: Intense warming and salinification of intermediate waters of southern origin in the eastern subpolar North Atlantic in the 1990s to mid-2000s. J. Geophys. Res., 113, C12022, doi:10.1029/2008JC004975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schanze, J. J., R. W. Schmitt, and L. L. Yu, 2010: The global oceanic freshwater cycle: A state-of-the-art quantification. J. Mar. Res., 68, 569595, doi:10.1357/002224010794657164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 2008: Salinity and the global water cycle. Oceanography, 21, 1219, doi:10.5670/oceanog.2008.63.

  • Seidov, D., and B. J. Haupt, 2002: On the role of inter-basin surface salinity contrasts in global ocean circulation. Geophys. Res. Lett., 29, 1800, doi:10.1029/2002GL014813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skliris, N., R. Marsh, S. A. Josey, S. A. Good, C. Liu, and R. P. Allan, 2014: Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater fluxes. Climate Dyn., 43, 709736, doi:10.1007/s00382-014-2131-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., K. Ueyoshio, A. Köhl, W. G. Large, S. A. Josey, and C. Wunsch, 2004: Estimating air-sea fluxes of heat, freshwater, and momentum through global ocean data assimilation. J. Geophys. Res., 109, C05023, doi:10.1029/2003JC002082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, L., L. Corre, S. Cravatte, T. Delcroix, G. Reverdin, and A. Ribes, 2012: Near-surface salinity as nature’s rain gauge to detect human influence on the tropical water cycle. J. Climate, 25, 958977, doi:10.1175/JCLI-D-10-05025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123138, doi:10.3354/cr00953.

  • Trenberth, K. E., and J. T. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future, 1, 1932, doi:10.1002/2013EF000165.

  • Trenberth, K. E., and G. R. Asrar, 2014: Challenges and opportunities in water cycle research: WCRP contributions. Surv. Geophys., 35, 515532, doi:10.1007/s10712-012-9214-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, doi:10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. Fasullo, and L. Smith, 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24, 741758, doi:10.1007/s00382-005-0017-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinogradova, N. T., and R. M. Ponte, 2013: Clarifying the link between surface salinity and freshwater fluxes on climate scales. J. Geophys. Res. Oceans, 118, 31903201, doi:10.1002/jgrc.20200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinogradova, N. T., T. Lee, P. J. Durack, J. Boutin, and D. Stammer, 2016: Ocean salinity and the water cycle: Recent progress and future challenges. GEWEX News, No. 28, International GEWEX Project Office, Silver Spring, MD, 6–8.

  • Wang, L., J. Huang, Y. He, and Y. Guan, 2014: Combined effects of the Pacific decadal oscillation and El Niño-Southern Oscillation on global land dry–wet changes. Sci. Rep., 4, 6651, doi:10.1038/srep06651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., R. W. Schmitt, H. L. Bryden, and A. Stigebrandt, 1992: Transport of freshwater by the oceans. J. Phys. Oceanogr., 22, 155162, doi:10.1175/1520-0485(1992)022<0155:TOFBTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willett, K. W., N. P. Gillett, P. D. Jones, and P. W. Thorne, 2007: Attribution of observed humidity changes to human influence. Nature, 449, 710721, doi:10.1038/nature06207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and Coauthors, 2012: Enhanced warming over the global subtropical western boundary currents. Nat. Climate Change, 2, 161166, doi:10.1038/nclimate1353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2006: Discrete Inverse and State Estimation Problems: With Geophysical Fluid Applications. Cambridge University Press, 384 pp.

    • Crossref
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2007: Practical global oceanic state estimation. Physica D, 230, 197208, doi:10.1016/j.physd.2006.09.040.

  • Wunsch, C., P. Heimbach, R. M. Ponte, and I. Fukumori, 2009: The global general circulation of the ocean estimated by the ECCO-consortium. Oceanography, 22, 88103, doi:10.5670/oceanog.2009.41.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., 2011: A global relationship between the water cycle and near-surface salinity. J. Geophys. Res., 116, C10025, doi:10.1029/2010JC006937.

  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, doi:10.1175/BAMS-88-4-527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, S. Josey, T. Lee, A. Kumar, C. Wen, and Y. Xue, 2017: The global ocean water cycle in atmospheric reanalysis, satellite, and ocean salinity. J. Climate, 30, 38293852, doi:10.1175/JCLI-D-16-0479.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X. B., F. W. Zwiers, G. C. Hegerls, F. H. Lambert, N. P. Gillett, S. Solomon, P. A. Scott, and T. Nozawa, 2007: Detection of human influence on twentieth-century precipitation. Nature, 448, 461464, doi:10.1038/nature06025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, R.-H. Zhang, Z.-Z. Hu, A. Kumar, M. A. Balmaseda, L. Marx, and J. L. Kinter, 2014: Salinity anomaly as a trigger for ENSO events. Sci. Rep., 4, 6821, doi:10.1038/srep06821.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1097 461 23
PDF Downloads 500 196 8