Potential Predictability during a Madden–Julian Oscillation Event

Charles Jones Department of Geography, and Earth Research Institute, University of California, Santa Barbara, Santa Barbara, California

Search for other papers by Charles Jones in
Current site
Google Scholar
PubMed
Close
and
Jimy Dudhia National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jimy Dudhia in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The Madden–Julian oscillation (MJO) is an important source of predictability. The boreal 2004/05 winter is used as a case study to conduct predictability experiments with the Weather Research and Forecasting (WRF) Model. That winter season was characterized by an MJO event, weak El Niño, strong North Atlantic Oscillation, and extremely wet conditions over the contiguous United States (CONUS). The issues investigated are as follows: 1) growth of forecast errors in the tropics relative to the extratropics, 2) propagation of forecast errors from the tropics to the extratropics, 3) forecast error growth on spatial scales associated with MJO and non-MJO variability, and 4) the relative importance of MJO and non-MJO tropical variability on predictability of precipitation over CONUS.

Root-mean-square errors in forecasts of normalized eddy kinetic energy (NEKE) (200 hPa) show that errors in initial conditions in the tropics grow faster than in the extratropics. Potential predictability extends out to about 4 days in the tropics and 9 days in the extratropics. Forecast errors in the tropics quickly propagate to the extratropics, as demonstrated by experiments in which initial conditions are only perturbed in the tropics. Forecast errors in NEKE (200 hPa) on scales related to the MJO grow slower than in non-MJO variability over localized areas in the tropics and short lead times. Potential predictability of precipitation extends to 1–5 days over most of CONUS but to longer leads (7–12 days) over regions with orographic precipitation in California. Errors in initial conditions on small scales relative to the MJO quickly grow, propagate to the extratropics, and degrade forecast skill of precipitation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Charles Jones, cjones@eri.ucsb.edu

Abstract

The Madden–Julian oscillation (MJO) is an important source of predictability. The boreal 2004/05 winter is used as a case study to conduct predictability experiments with the Weather Research and Forecasting (WRF) Model. That winter season was characterized by an MJO event, weak El Niño, strong North Atlantic Oscillation, and extremely wet conditions over the contiguous United States (CONUS). The issues investigated are as follows: 1) growth of forecast errors in the tropics relative to the extratropics, 2) propagation of forecast errors from the tropics to the extratropics, 3) forecast error growth on spatial scales associated with MJO and non-MJO variability, and 4) the relative importance of MJO and non-MJO tropical variability on predictability of precipitation over CONUS.

Root-mean-square errors in forecasts of normalized eddy kinetic energy (NEKE) (200 hPa) show that errors in initial conditions in the tropics grow faster than in the extratropics. Potential predictability extends out to about 4 days in the tropics and 9 days in the extratropics. Forecast errors in the tropics quickly propagate to the extratropics, as demonstrated by experiments in which initial conditions are only perturbed in the tropics. Forecast errors in NEKE (200 hPa) on scales related to the MJO grow slower than in non-MJO variability over localized areas in the tropics and short lead times. Potential predictability of precipitation extends to 1–5 days over most of CONUS but to longer leads (7–12 days) over regions with orographic precipitation in California. Errors in initial conditions on small scales relative to the MJO quickly grow, propagate to the extratropics, and degrade forecast skill of precipitation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Charles Jones, cjones@eri.ucsb.edu
Save
  • Adames, A. F., and J. M. Wallace, 2014: Three-dimensional structure and evolution of the MJO and its relation to the mean flow. J. Atmos. Sci., 71, 20072026, doi:10.1175/JAS-D-13-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., C. Jones, and B. Liebmann, 2004: The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Climate, 17, 88108, doi:10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T. C., and J. C. Alpert, 1990: Systematic errors in the annual and intraseasonal variations of the planetary-scale divergent circulation in NMC medium-range forecasts. Mon. Wea. Rev., 118, 26072623, doi:10.1175/1520-0493(1990)118<2607:SEITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. A. Weyn, 2016: Thunderstorms do not get butterflies. Bull. Amer. Meteor. Soc., 97, 237243, doi:10.1175/BAMS-D-15-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., and Coauthors, 2010: A framework for assessing operational Madden–Julian oscillation forecasts: A CLIVAR MJO Working Group project. Bull. Amer. Meteor. Soc., 91, 12471258, doi:10.1175/2010BAMS2816.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., P. E. Roundy, C. J. Schreck, A. Vintzileos, and C. D. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 141, 41734196, doi:10.1175/MWR-D-13-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1994: Organization of convection within the Madden–Julian oscillation. J. Geophys. Res., 99, 80738083, doi:10.1029/94JD00045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237, doi:10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., B. Liebmann, M. Newman, J. D. Glick, and J. E. Schemm, 2000: Medium-range forecast errors associated with active episodes of the Madden–Julian oscillation. Mon. Wea. Rev., 128, 6986, doi:10.1175/1520-0493(2000)128<0069:MRFEAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirons, L. C., P. Inness, F. Vitart, and P. Bechtold, 2013a: Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part I: The representation of the MJO. Quart. J. Roy. Meteor. Soc., 139, 14171426, doi:10.1002/qj.2060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirons, L. C., P. Inness, F. Vitart, and P. Bechtold, 2013b: Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part II: The application of process-based diagnostics. Quart. J. Roy. Meteor. Soc., 139, 14271444, doi:10.1002/qj.2059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., P. Bauer, W. Wang, P. A. Arkin, and J. Gottschalck, 2010: An evaluation of precipitation forecasts from operational models and reanalyses including precipitation variations associated with MJO activity. Mon. Wea. Rev., 138, 45424560, doi:10.1175/2010MWR3436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., and L. M. V. Carvalho, 2014: Sensitivity to Madden–Julian oscillation variations on heavy precipitation over the contiguous United States. Atmos. Res., 147–148, 1026, doi:10.1016/j.atmosres.2014.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, J. K. E. Schemm, and W. K. M. Lau, 2000: Prediction skill of the Madden and Julian Oscillation in dynamical extended range forecasts. Climate Dyn., 16, 273289, doi:10.1007/s003820050327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, K. M. Lau, and W. Stern, 2004a: Global occurrences of extreme precipitation and the Madden–Julian oscillation: Observations and predictability. J. Climate, 17, 45754589, doi:10.1175/3238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, K. M. Lau, and W. Stern, 2004b: The Madden–Julian oscillation and its impact on Northern Hemisphere weather predictability. Mon. Wea. Rev., 132, 14621471, doi:10.1175/1520-0493(2004)132<1462:TMOAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., J. Gottschalck, L. M. V. Carvalho, and W. R. Higgins, 2011a: Influence of the Madden–Julian oscillation on forecasts of extreme precipitation in the contiguous United States. Mon. Wea. Rev., 139, 332350, doi:10.1175/2010MWR3512.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., L. M. V. Carvalho, J. Gottschalck, and W. R. Higgins, 2011b: The Madden–Julian oscillation and the relative value of deterministic forecasts of extreme precipitation in the contiguous United States. J. Climate, 24, 24212428, doi:10.1175/2011JCLI-D-10-05002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2014: ECMWF and GFS model forecast verification during DYNAMO: Multiscale variability in MJO initiation over the equatorial Indian Ocean. J. Geophys. Res. Atmos., 119, 37363755, doi:10.1002/2013JD020833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1992: Circulation anomalies associated with tropical convection during northern winter. Mon. Wea. Rev., 120, 19001923, doi:10.1175/1520-0493(1992)120<1900:CAAWTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H. M., P. J. Webster, V. E. Toma, and D. Kim, 2014: Predictability and prediction skill of the MJO in two operational forecasting systems. J. Climate, 27, 53645378, doi:10.1175/JCLI-D-13-00480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and F. C. Chang, 1992: Tropical intraseasonal oscillation and its prediction by the NMC operational model. J. Climate, 5, 13651378, doi:10.1175/1520-0442(1992)005<1365:TIOAIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and D. E. Waliser, 2012: Intraseasonal Variability in the Atmosphere–Ocean Climate System. 2nd ed. Springer, 613 pp.

    • Crossref
    • Export Citation
  • Lavers, D. A., F. Pappenberger, and E. Zsoter, 2014: Extending medium-range predictability of extreme hydrological events in Europe. Nat. Commun., 5, 5382, doi:10.1038/ncomms6382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2008: Forecast skill of the Madden–Julian oscillation in two Canadian atmospheric models. Mon. Wea. Rev., 136, 41304149, doi:10.1175/2008MWR2459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, L. F., and E. F. Wood, 2006: Assessing the idealized predictability of precipitation and temperature in the NCEP Climate Forecast System. Geophys. Res. Lett., 33, L04708, doi:10.1029/2005GL025292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsueda, M., and H. Endo, 2011: Verification of medium-range MJO forecasts with TIGGE. Geophys. Res. Lett., 38, L11801, doi:10.1029/2011GL047480.

  • Matsueda, S., and Y. Takaya, 2015: The global influence of the Madden–Julian oscillation on extreme temperature events. J. Climate, 28, 41414151, doi:10.1175/JCLI-D-14-00625.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2004: Atmospheric response to observed intraseasonal tropical sea surface temperature anomalies. Geophys. Res. Lett., 31, L14107, doi:10.1029/2004GL020474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011, doi:10.1256/qj.02.123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., A. Doring, and G. Seregin, 2014: The real butterfly effect. Nonlinearity, 27, R123R141, doi:10.1088/0951-7715/27/9/R123.

  • Rashid, H. A., H. H. Hendon, M. C. Wheeler, and O. Alves, 2010: Prediction of the Madden–Julian oscillation with the POAMA dynamical prediction system. Climate Dyn., 36, 649661, doi:10.1007/s00382-010-0754-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, P., and T. Li, 2013: Relative roles of circumnavigating waves and extratropics on the MJO and its relationship with the mean state. J. Atmos. Sci., 70, 876893, doi:10.1175/JAS-D-12-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., and P. E. Roundy, 2015: The development of upper-tropospheric wind over the Western Hemisphere in association with MJO convective initiation. J. Atmos. Sci., 72, 31383160, doi:10.1175/JAS-D-14-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., and P. E. Roundy, 2016: Gross moist stability and the Madden–Julian oscillation in reanalysis data. Quart. J. Roy. Meteor. Soc., 142, 27402757, doi:10.1002/qj.2865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K. H., and S. W. Son, 2012: The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian oscillation during northern winter. J. Atmos. Sci., 69, 7996, doi:10.1175/2011JAS3686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shelly, A., P. Xavier, D. Copsey, T. Johns, J. M. Rodríguez, S. Milton, and N. Klingaman, 2014: Coupled versus uncoupled hindcast simulations of the Madden–Julian oscillation in the year of tropical convection. Geophys. Res. Lett., 41, 56705677, doi:10.1002/2013GL059062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Tribbia, J. J., and D. P. Baumhefner, 2004: Scale interactions and atmospheric predictability: An updated perspective. Mon. Wea. Rev., 132, 703713, doi:10.1175/1520-0493(2004)132<0703:SIAAPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., 140, 18891899, doi:10.1002/qj.2256.

  • Vitart, F., and F. Molteni, 2010: Simulation of the Madden–Julian oscillation and its teleconnections in the ECMWF forecast system. Quart. J. Roy. Meteor. Soc., 136, 842855, doi:10.1002/qj.623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., S. Woolnough, M. A. Balmaseda, and A. M. Tompkins, 2007: Monthly forecast of the Madden–Julian oscillation using a coupled GCM. Mon. Wea. Rev., 135, 27002715, doi:10.1175/MWR3415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. M. Lau, W. Stern, and C. Jones, 2003: Potential predictability of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 84, 3350, doi:10.1175/BAMS-84-1-33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W. Q., M. P. Hung, S. J. Weaver, A. Kumar, and X. H. Fu, 2014: MJO prediction in the NCEP Climate Forecast System version 2. Climate Dyn., 42, 25092520, doi:10.1007/s00382-013-1806-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xavier, P., R. Rahmat, W. K. Cheong, and E. Wallace, 2014: Influence of Madden–Julian oscillation on Southeast Asia rainfall extremes: Observations and predictability. Geophys. Res. Lett., 41, 44064412, doi:10.1002/2014GL060241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C. D., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C. D., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, doi:10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 646 403 208
PDF Downloads 177 36 3