A Midlatitude Influence on Australian Monsoon Bursts

Sugata Narsey School of Earth, Atmosphere and Environment, and Australian Research Council Centre of Excellence for Climate Systems Science, Monash University, Clayton, Victoria, Australia

Search for other papers by Sugata Narsey in
Current site
Google Scholar
PubMed
Close
,
Michael J. Reeder School of Earth, Atmosphere and Environment, and Australian Research Council Centre of Excellence for Climate Systems Science, Monash University, Clayton, Victoria, Australia

Search for other papers by Michael J. Reeder in
Current site
Google Scholar
PubMed
Close
,
Duncan Ackerley School of Earth, Atmosphere and Environment, and Australian Research Council Centre of Excellence for Climate Systems Science, Monash University, Clayton, Victoria, Australia

Search for other papers by Duncan Ackerley in
Current site
Google Scholar
PubMed
Close
, and
Christian Jakob School of Earth, Atmosphere and Environment, and Australian Research Council Centre of Excellence for Climate Systems Science, Monash University, Clayton, Victoria, Australia

Search for other papers by Christian Jakob in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The initiation of northern Australian monsoon rainfall bursts is accompanied by an increase in cyclonic circulation in the monsoon region. This study shows that the change in circulation at the start of the composite rainfall burst is predominantly influenced by midlatitude frontlike features. By exploiting the relationship between circulation tendency and the convergence of absolute vorticity flux, the circulation changes accompanying the initiation of Australian monsoon bursts is investigated. Moisture flux convergence is found to be proportional to the circulation changes in the monsoon region. Using a composite analysis it is shown that absolute vorticity fluxes through the southern boundary are by far the most important influence on monsoon burst circulation changes, with only one-third of events more closely related to other influences including the Madden–Julian oscillation. This is shown to be true throughout the wet season.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sugata Narsey, sugata.narsey@monash.edu

Abstract

The initiation of northern Australian monsoon rainfall bursts is accompanied by an increase in cyclonic circulation in the monsoon region. This study shows that the change in circulation at the start of the composite rainfall burst is predominantly influenced by midlatitude frontlike features. By exploiting the relationship between circulation tendency and the convergence of absolute vorticity flux, the circulation changes accompanying the initiation of Australian monsoon bursts is investigated. Moisture flux convergence is found to be proportional to the circulation changes in the monsoon region. Using a composite analysis it is shown that absolute vorticity fluxes through the southern boundary are by far the most important influence on monsoon burst circulation changes, with only one-third of events more closely related to other influences including the Madden–Julian oscillation. This is shown to be true throughout the wet season.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sugata Narsey, sugata.narsey@monash.edu
Save
  • Berry, G. J., and M. J. Reeder, 2016: The dynamics of Australian monsoon bursts. J. Atmos. Sci., 73, 5559, doi:10.1175/JAS-D-15-0071.1.

  • Berry, G. J., M. J. Reeder, and C. Jakob, 2011: A global climatology of atmospheric fronts. Geophys. Res. Lett., 38, L04809, doi:10.1029/2010GL046451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G. J., M. J. Reeder, and C. Jakob, 2012: Coherent synoptic disturbances in the Australian monsoon. J. Climate, 25, 84098421, doi:10.1175/JCLI-D-12-00143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charba, J. P., 1977: Operational system for predicting thunderstorms two to six hours in advance. NOAA Tech. Memo. NWS TDL-64, 24 pp.

  • Davidson, N. E., J. L. McBride, and B. J. McAvaney, 1983: The onset of the Australian monsoon during winter MONEX: Synoptic aspects. Mon. Wea. Rev., 111, 496516, doi:10.1175/1520-0493(1983)111<0496:TOOTAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidson, N. E., K. J. Tory, M. J. Reeder, and W. L. Drosdowsky, 2007: Extratropical–tropical interaction during onset of the Australian monsoon: Reanalysis diagnostics and idealized dry simulations. J. Atmos. Sci., 64, 34753498, doi:10.1175/JAS4034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drosdowsky, W., 1996: Variability of the Australian summer monsoon at Darwin: 1957–1992. J. Climate, 9, 8596, doi:10.1175/1520-0442(1996)009<0085:VOTASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, J., 1999: The insignificance of null hypothesis significance testing. Polit. Res. Quart., 52, 647674, doi:10.1177/106591299905200309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828841, doi:10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1990a: A composite study of onset of the Australian summer monsoon. J. Atmos. Sci., 47, 22272240, doi:10.1175/1520-0469(1990)047<2227:ACSOOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1990b: The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J. Atmos. Sci., 47, 29092924, doi:10.1175/1520-0469(1990)047<2909:TIDOOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hung, C.-W., and M. Yanai, 2004: Factors contributing to the onset of the Australian summer monsoon. Quart. J. Roy. Meteor. Soc., 130, 739758, doi:10.1256/qj.02.191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D. H., 1999: The insignificance of statistical significance testing. J. Wildl. Manage., 63, 763772, doi:10.2307/3802789.

  • Jones, D. A., W. Wang, and R. Fawcett, 2009: High-quality spatial climate data-sets for Australia. Aust. Meteor. Oceanogr. J., 58, 233248, doi:10.22499/2.5804.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., R. K. Smith, M. T. Montgomery, B. Lynch, and C. Earl-Spurr, 2016: A case-study of a monsoon low that formed over the sea and intensified over land as seen in ECMWF analyses. Quart. J. Roy. Meteor. Soc., 142, 22442255, doi:10.1002/qj.2814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., R. K. Smith, and M. T. Montgomery, 2017: Tropical low formation and intensification over land as seen in ECMWF analyses. Quart. J. Roy. Meteor. Soc., 143, 772784, doi:10.1002/qj.2963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Moise, A. F., R. A. Colman, and J. R. Brown, 2012: Behind uncertainties in projections of Australian tropical climate: Analysis of 19 CMIP3 models. J. Geophys. Res., 117, D10103, doi:10.1029/2011JD017365.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 2001: Commentary and analysis: The insignificance of significance testing. Bull. Amer. Meteor. Soc., 82, 981986, doi:10.1175/1520-0477(2001)082<0981:CAATIO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, N., J. L. McBride, and R. J. Ormerod, 1982: On predicting the onset of the Australian wet season at Darwin. Mon. Wea. Rev., 110, 1417, doi:10.1175/1520-0493(1982)110<0014:OPTOOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, M., C. Jakob, and M. J. Reeder, 2009: Regimes of the north Australian wet season. J. Climate, 22, 66996715, doi:10.1175/2009JCLI3057.1.

  • Raymond, D. J., S. Gjorgjievska, S. Sessions, and Z. Fuchs, 2014: Tropical cyclogenesis and mid-level vorticity. Aust. Meteor. Oceanogr. J., 64, 1125, doi:10.22499/2.6401.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, G. Kilroy, S. Tang, and S. K. Müller, 2015: Tropical low formation during the Australian monsoon: The events of January 2013. Aust. Meteor. Oceanogr. J., 65, 318341, doi:10.22499/2.6503.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., C. Jakob, and T. P. Lane, 2013: On the identification of the large-scale properties of tropical convection using cloud regimes. J. Climate, 26, 66186632, doi:10.1175/JCLI-D-12-00624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troup, A. J., 1961: Variations in upper tropospheric flow associated with the onset of the Australian summer monsoon. Indian J. Meteor. Geophys., 12, 217230.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 2006: The Asian Monsoon. Springer, 787 pp.

  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and J. L. McBride, 2005: Australian–Indonesian monsoon. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. Lau and D. Waliser, Eds., Springer, 125–173.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 388 159 9
PDF Downloads 302 114 7