SynthETC: A Statistical Model for Severe Winter Storm Hazard on Eastern North America

Timothy Hall NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Timothy Hall in
Current site
Google Scholar
PubMed
Close
and
James F. Booth City College of the City University of New York, New York, New York

Search for other papers by James F. Booth in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors develop, evaluate, and apply SynthETC, a statistical–stochastic model of winter extratropical cyclones (ETCs) over eastern North America. SynthETC simulates the life cycle of ETCs from formation to termination, and it can be used to estimate the probability of extreme ETC events beyond the historical record. Two modes of climate variability are used as independent covariates: El Niño–Southern Oscillation (ENSO) Niño-3.4 index and the monthly North Atlantic Oscillation (NAO). SynthETC is used to estimate the annual occurrence rate over sites in eastern North America of intense ETC passage in different ENSO and NAO states. Positive NAO is associated with increased rates over the North Atlantic, while negative NAO is associated with decreased rates over the North Atlantic and increased rates over northern Quebec. Positive ENSO is associated with decreased rates over the North Atlantic, Ontario, and the Canadian maritime, while negative ENSO is associated with increased rates over those regions, as well as the Great Lakes region.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy Hall, timothy.m.hall@nasa.gov

Abstract

The authors develop, evaluate, and apply SynthETC, a statistical–stochastic model of winter extratropical cyclones (ETCs) over eastern North America. SynthETC simulates the life cycle of ETCs from formation to termination, and it can be used to estimate the probability of extreme ETC events beyond the historical record. Two modes of climate variability are used as independent covariates: El Niño–Southern Oscillation (ENSO) Niño-3.4 index and the monthly North Atlantic Oscillation (NAO). SynthETC is used to estimate the annual occurrence rate over sites in eastern North America of intense ETC passage in different ENSO and NAO states. Positive NAO is associated with increased rates over the North Atlantic, while negative NAO is associated with decreased rates over the North Atlantic and increased rates over northern Quebec. Positive ENSO is associated with decreased rates over the North Atlantic, Ontario, and the Canadian maritime, while negative ENSO is associated with increased rates over those regions, as well as the Great Lakes region.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy Hall, timothy.m.hall@nasa.gov
Save
  • Ambaum, M. H. P., and L. Novak, 2014: A nonlinear oscillator describing storm track variability. Quart. J. Roy. Meteor. Soc., 140, 26802684, doi:10.1002/qj.2352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, M., G. Tselioudis, and W. B. Rossow, 2016: A new climatology for investigating storm influences in and on the extratropics. J. Appl. Meteor. Climatol., 55, 12871303, doi:10.1175/JAMC-D-15-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernhardt, J. E., and A. T. DeGaetano, 2012: Meteorological factors affecting the speed of movement and related impacts of extratropical cyclones along the U.S. East Coast. Nat. Hazards, 61, 14631472, doi:10.1007/s11069-011-0078-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonazzi, A., A. L. Dobbin, J. K. Turner, P. A. Wilson, C. Mitas, and E. Bellone, 2014: A simulation approach for estimating hurricane risk over a 5-yr horizon. Wea. Climate Soc., 6, 7790, doi:10.1175/WCAS-D-13-00025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., H. Reider, D. E. Lee, and Y. Kushnir, 2015: The paths of extratropical cyclones associated with wintertime high wind events in the northeast United States. J. Appl. Meteor. Climatol., 54, 18711885, doi:10.1175/JAMC-D-14-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Born, K., P. L. Ludwig, and J. G. Pinto, 2012: Wind gust estimation for mid-European winter storms: Towards a probabilistic view. Tellus, 64A, 17471, doi:10.3402/tellusa.v64i0.17471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. K., 2016: Extratropical cyclone classification and its use in climate studies. Rev. Geophys., 54, 486520, doi:10.1002/2016RG000519.

  • Colle, B. A., J. F. Booth, and E. K. M. Chang, 2015: A review of historical and future changes of extratropical cyclones and associated impacts along the U.S. East Coast. Curr. Climate Change Rep., 1, 125143, doi:10.1007/s40641-015-0013-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and P. D. Sardeshmukh, 2004: Storm track predictability on seasonal and decadal scales. J. Climate, 17, 37013720, doi:10.1175/1520-0442(2004)017<3701:STPOSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation systems. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., 2008: Predictability of seasonal east coast winter storm surge impacts with application to New York’s Long Island. Meteor. Appl., 15, 231242, doi:10.1002/met.59.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., M. E. Hirsch, and S. J. Colucci, 2002: Statistical prediction of seasonal east coast winter storm frequency. J. Climate, 15, 11011117, doi:10.1175/1520-0442(2002)015<1101:SPOSEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichler, T., and W. Higgins, 2006: Climatology and ENSO-related variability of North American extratropical cyclone activity. J. Climate, 19, 20762093, doi:10.1175/JCLI3725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., E. Vivant, and C. Risi, 2006: A statistical deterministic approach of hurricane risk assessment. Bull. Amer. Meteor. Soc., 87, 299314, doi:10.1175/BAMS-87-3-299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaffney, S. J., A. W. Robertson, P. Smyth, S. J. Camargo, and M. Ghil, 2007: Probabilistic clustering of extratropical cyclones using regression mixture models. Climate Dyn., 29, 423440, doi:10.1007/s00382-007-0235-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., S.-W. Son, and J. R. Gyakum, 2013: Intraseasonal and interannual variability in North American storm tracks and its relationship to equatorial Pacific variability. Mon. Wea. Rev., 141, 36103625, doi:10.1175/MWR-D-12-00322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haas, R., and J. G. Pinto, 2012: A combined statistical and dynamical approach for downscaling large-scale footprints of European windstorms. Geophys. Res. Lett., 39, L23804, doi:10.1029/2012GL054014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, T. M., and S. Jewson, 2007: Statistical modeling of North Atlantic tropical cyclone tracks. Tellus, 59A, 486498, doi:10.1111/j.1600-0870.2007.00240.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, T. M., and S. Jewson, 2008: Comparison of local and basinwide methods for risk assessment of tropical cyclone landfall. J. Appl. Meteor. Climatol., 47, 361367, doi:10.1175/2007JAMC1720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, T. M., and E. Yonekura, 2013: North American tropical cyclone landfall and SST: A statistical model study. J. Climate, 26, 84228439, doi:10.1175/JCLI-D-12-00756.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Y., A. H. Monahan, C. G. Jones, A. Dai, S. Biner, D. Caya, and K. Winger, 2010: Probability distributions of land surface wind speeds over North America. J. Geophys. Res., 115, D04103, doi:10.1029/2008JD010708.

    • Search Google Scholar
    • Export Citation
  • Hirsch, M. E., A. T. DeGaetano, and S. J. Colucci, 2001: An East Coast winter climatology. J. Climate, 14, 882899, doi:10.1175/1520-0442(2001)014<0882:AECWSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., R. W. Lee, and L. Bengtsson, 2011: A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Climate, 24, 48884906, doi:10.1175/2011JCLI4097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B., and K. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, doi:10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, A., D. B. Stephenson, T. Economou, M. Holland, and I. Cook, 2016: New perspectives on the collective risk of extratropical cyclones. Quart. J. Roy. Meteor. Soc., 142, 243256, doi:10.1002/qj.2649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, M. K., and L. B. Mason, 2005: Synthetic tropical cyclone database. J. Waterw. Port Coastal Ocean Eng., 131, 181192, doi:10.1061/(ASCE)0733-950X(2005)131:4(181).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., T. Jonsson, and D. Wheeler, 1997: Extension of the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol., 17, 14331450, doi:10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klawa, M., and U. Ulbrich, 2003: A model for the estimation of storm losses and the identification of severe winter storms in Germany. Nat. Hazards Earth Syst. Sci., 3, 725732, doi:10.5194/nhess-3-725-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kocin, P. J., and L. W. Uccellini, 1990: Snowstorms along the Northeastern Coast of the United States: 1955 to 1985. Meteor. Monogr., No. 44, Amer. Meteor. Soc., 280 pp.

    • Crossref
    • Export Citation
  • Landsea, C., J. Franklin, and J. Beven, 2015: The revised Atlantic hurricane database (HURDAT2). NOAA/NHC. [Available online at nhc.noaa.gov.]

  • Miller, J. E., 1946: Cyclogenesis in the Atlantic coastal region of the United States. J. Meteor., 3, 3144, doi:10.1175/1520-0469(1946)003<0031:CITACR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neu, U., and Coauthors, 2013: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Amer. Meteor. Soc., 94, 529547, doi:10.1175/BAMS-D-11-00154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ning, L., and R. S. Bradley, 2015: Winter climate extremes over the northeastern United States and southeastern Canada and teleconnections with large-scale modes of climate variability. J. Climate, 28, 24752493, doi:10.1175/JCLI-D-13-00750.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orton, P. M., T. M. Hall, S. A. Talke, A. F. Blumberg, N. Georgas, and S. Vinogradov, 2016: A validated tropical-extratropical flood hazard assessment for New York Harbor. J. Geophys. Res. Oceans, 121, 89048929, doi:10.1002/2016JC011679.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., S. Zacharias, A. H. Fink, G. C. Leckebusch, and U. Ulbrich, 2009: Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Climate Dyn., 32, 711737, doi:10.1007/s00382-008-0396-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plante, M., S.-W. Son, E. Atallah, J. Gyakum, and K. Grise, 2015: Extratropical cyclone climatology across eastern Canada. Int. J. Climatol., 35, 27592776, doi:10.1002/joc.4170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rumpf, J., H. Weindl, P. Hoppe, E. E. Raughe, and V. Schmidt, 2007: Stochastic modeling of tropical cyclone tracks. Math. Methods Oper. Res., 66, 475490, doi:10.1007/s00186-007-0168-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606, doi:10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seregina, L. S., R. Haas, K. Born, and J. G. Pinto, 2014: Development of a wind gust model to estimate gust speeds and their return periods. Tellus, 66A, 22905, doi:10.3402/tellusa.v66.22905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., F. Carse, R. G. Barry, and J. C. Rogers, 1997: Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J. Climate, 10, 453464, doi:10.1175/1520-0442(1997)010<0453:ILCACF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. B., and R. W. Katz, 2013: U.S. billion-dollar weather and climate disasters: Data sources, trends, accuracy and biases. Nat. Hazards, 67, 387410, doi:10.1007/s11069-013-0566-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., G. C. Leckebusch, and J. G. Pinto, 2009: Extra-tropical cyclones in the present and future climate: A review. Theor. Appl. Climatol., 96, 117131, doi:10.1007/s00704-008-0083-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickery, P., P. Skerij, and L. Twisdale, 2000: Simulation of hurricane risk in the U.S. using empirical track model. J. Struct. Eng., 126, 12221237, doi:10.1061/(ASCE)0733-9445(2000)126:10(1222).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vose, R. S., and Coauthors, 2014: Monitoring and understanding changes in extremes: Extratropical storms, winds, and waves. Bull. Amer. Meteor. Soc., 95, 377386, doi:10.1175/BAMS-D-12-00162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., G. A. Vecchi, T. L. Delworth, K. Paffendorf, R. Gudgel, L. Jia, S. Underwood, and F. Zeng, 2015: Extreme North American winter storm season of 2013/14: Roles of radiative forcing and the global warming hiatus [in “Explaining Extreme Events of 2014 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 96 (12), S25S28, doi:10.1175/BAMS-D-15-00133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yonekura, E., and T. M. Hall, 2014: ENSO effect on East Asian tropical cyclone landfall via changes in tracks and genesis in a statistical model. J. Appl. Meteor. Climatol., 53, 406420, doi:10.1175/JAMC-D-12-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 404 164 9
PDF Downloads 214 80 10