Pairwise-Rotated EOFs of Global SST

Xianyao Chen Physical Oceanography Laboratory/CIMST, Ocean University of China, and Qingdao National Laboratory of Marine Science and Technology, Qingdao, China

Search for other papers by Xianyao Chen in
Current site
Google Scholar
PubMed
Close
,
John M. Wallace Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by John M. Wallace in
Current site
Google Scholar
PubMed
Close
, and
Ka-Kit Tung Department of Applied Mathematics, University of Washington, Seattle, Washington

Search for other papers by Ka-Kit Tung in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Empirical orthogonal function (EOF) analysis of global sea surface temperature yields modes in which interannual variability associated with ENSO and the lower-frequency variability associated with the Pacific decadal oscillation (PDO) and the Atlantic multidecadal oscillation (AMO) are confounded with one another and with the signature of global warming. The confounded EOFs exhibit overlapping centers of action with polarities of the perturbations juxtaposed such that the respective modes are mutually orthogonal in the global domain. When physical modes with different time scales appear in the same pair of EOFs, the principal component (PC) time series tend to be positively correlated in one frequency band and negatively correlated in another. Mode mixing may be a reflection of sampling variability or it may reflect the lack of spatial orthogonality of the physical modes themselves. Using sequences of pairwise orthogonal rotations of selected PCs, it is possible, without recourse to filtering, to recover a global warming mode with a bland spatial pattern and a nearly linear upward trend, along with dynamical modes, each with its own characteristic time scale, that resemble ENSO, the PDO, and the AMO. Novel elements of this analysis include a rationale for choosing the optimal angle for pairwise rotation and a simple algorithm for eliminating mode mixing between the dynamical modes and the global warming mode by transferring the linear trends from the former to the latter.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xianyao Chen, chenxy@ouc.edu.cn

Abstract

Empirical orthogonal function (EOF) analysis of global sea surface temperature yields modes in which interannual variability associated with ENSO and the lower-frequency variability associated with the Pacific decadal oscillation (PDO) and the Atlantic multidecadal oscillation (AMO) are confounded with one another and with the signature of global warming. The confounded EOFs exhibit overlapping centers of action with polarities of the perturbations juxtaposed such that the respective modes are mutually orthogonal in the global domain. When physical modes with different time scales appear in the same pair of EOFs, the principal component (PC) time series tend to be positively correlated in one frequency band and negatively correlated in another. Mode mixing may be a reflection of sampling variability or it may reflect the lack of spatial orthogonality of the physical modes themselves. Using sequences of pairwise orthogonal rotations of selected PCs, it is possible, without recourse to filtering, to recover a global warming mode with a bland spatial pattern and a nearly linear upward trend, along with dynamical modes, each with its own characteristic time scale, that resemble ENSO, the PDO, and the AMO. Novel elements of this analysis include a rationale for choosing the optimal angle for pairwise rotation and a simple algorithm for eliminating mode mixing between the dynamical modes and the global warming mode by transferring the linear trends from the former to the latter.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xianyao Chen, chenxy@ouc.edu.cn
Save
  • Barcikowska, M. J., T. R. Knutson, and R. Zhang, 2017: Observed and simulated fingerprints of multidecadal climate variability and their contributions to periods of global SST stagnation. J. Climate, 30, 721737, doi:10.1175/JCLI-D-16-0443.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., S. Nigam, and E. H. Berbery, 2001: ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought, and stream flow. J. Climate, 14, 21052128, doi:10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnidov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, doi:10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and J. M. Wallace, 2015: ENSO-like variability: 1900–2013. J. Climate, 28, 96239641, doi:10.1175/JCLI-D-15-0322.1.

  • Chen, X., and J. M. Wallace, 2016: Orthogonal PDO and ENSO indices. J. Climate, 29, 38833892, doi:10.1175/JCLI-D-15-0684.1.

  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, doi:10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A., P. Dinezio, and C. Deser, 2011: Rethinking the ocean’s role in the Southern Oscillation. J. Climate, 24, 40564072, doi:10.1175/2011JCLI3973.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606623, doi:10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J. Climate, 6, 17431753, doi:10.1175/1520-0442(1993)006<1743:SCVOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S. P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, doi:10.1146/annurev-marine-120408-151453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dommenget, D., and M. Latif, 2008: Generation of hyper climate modes. Geophys. Res. Lett., 35, L02706, doi:10.1029/2007GL031087.

  • Dommenget, D., T. Bayr, and C. Frauen, 2013: Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation. Climate Dyn., 40, 28252847, doi:10.1007/s00382-012-1475-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • d’Orgeville, and W. R. Peltier, 2007: On the Pacific decadal oscillation and the Atlantic multidecadal oscillation: Might they be related? Geophys. Res. Lett., 34, L23705, doi:10.1029/2007GL031584.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and A. M. Mestas-Nuñez, 1999: Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric climate patterns. J. Climate, 12, 27192733, doi:10.1175/1520-0442(1999)012<2719:MVIGSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, doi:10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., D. E. Parker, A. W. Colman, and R. Washington, 1999: Large scale modes of ocean surface temperature since the late nineteenth century. Beyond El Niño: Decadal and Interdecadal Climate Variability, A. Navarra, Ed., Springer, 73–102.

    • Crossref
    • Export Citation
  • Guan, B., and S. Nigam, 2008: Pacific sea surface temperatures in the twentieth century: An evolution-centric analysis of variability and trend. J. Climate, 21, 27902809, doi:10.1175/2007JCLI2076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and S. Nigam, 2009: Analysis of Atlantic SST variability factoring interbasin links and the secular trend: Clarified structure of the Atlantic multidecadal oscillation. J. Climate, 22, 42284240, doi:10.1175/2009JCLI2921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jamison, N., and S. Kravtsov, 2010: Decadal variations of North Atlantic sea surface temperature in observations and CMIP3 simulations. J. Climate, 23, 46194636, doi:10.1175/2010JCLI3598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., 1987: Rotation of principal components: Some comments. J. Climatol., 7, 507510, doi:10.1002/joc.3370070506.

  • Kaiser, H. F., 1958: The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187200, doi:10.1007/BF02289233.

  • Kitoh, A., T. Motoi, and H. Koide, 1999: SST variability and its mechanism in a coupled atmosphere–mixed-layer ocean model. J. Climate, 12, 12211239, doi:10.1175/1520-0442(1999)012<1221:SVAIMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., R. Kleeman, and C. Eckert, 1997: Greenhouse warming, decadal variability, or El Niño? An attempt to understand the anomalous 1990s. J. Climate, 10, 22212239, doi:10.1175/1520-0442(1997)010<2221:GWDVOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lian, T., and D. Chen, 2012: An evaluation of rotated EOF analysis and its application to tropical Pacific SST variability. J. Climate, 25, 53615373, doi:10.1175/JCLI-D-11-00663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombard, A., A. Cazenave, P.-Y. Le Traon, and M. Ishii, 2005: Contribution of thermal expansion to present-day sea-level change revisited. Global Planet. Change, 47, 116, doi:10.1016/j.gloplacha.2004.11.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and M. A. Palecki, 2006: Multidecadal climate variability of global lands and oceans. Int. J. Climatol., 26, 849865, doi:10.1002/joc.1289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Messié, M., and F. Chavez, 2011: Global modes of sea surface temperature variability in relation to regional climate indices. J. Climate, 24, 43144331, doi:10.1175/2011JCLI3941.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mestas-Nuñez, A. M., and D. B. Enfield, 1999: Rotated global modes of non-ENSO sea surface temperature variability. J. Climate, 12, 27342746, doi:10.1175/1520-0442(1999)012<2734:RGMONE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., 1999: Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climatic regime shifts. Geophys. Res. Lett., 26, 855858, doi:10.1029/1999GL900119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., G. P. Compo, and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 38533857, doi:10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, doi:10.1175/JCLI-D-15-0508.1.

  • Nigam, S., B. Guan, and A. Ruiz-Barradas, 2011: Key role of the Atlantic multidecadal oscillation in 20th century drought and wet periods over the Great Plains. Geophys. Res. Lett., 38, L16713, doi:10.1029/2011GL048650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D., C. Folland, A. Scaife, J. Knight, A. Colman, P. Baines, and B. Dong, 2007: Decadal to multidecadal variability and the climate change background. J. Geophys. Res., 112, D18115, doi:10.1029/2007JD008411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quadrelli, R., C. S. Bretherton, and J. M. Wallace, 2005: On sampling errors in empirical orthogonal functions. J. Climate, 18, 37043710, doi:10.1175/JCLI3500.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. E. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. J. Climatol., 6, 293335, doi:10.1002/joc.3370060305.

  • Santer, B. D., and Coauthors, 2017: Comparing tropospheric warming in climate models and satellite data. J. Climate, 30, 373392, doi:10.1175/JCLI-D-16-0333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726, doi:10.1038/367723a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and S. B. Goldenberg, 1998: Atlantic sea surface temperatures and tropical cyclone formation. J. Climate, 11, 578590, doi:10.1175/1520-0442(1998)011<0578:ASSTAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, doi:10.1029/2011GL047364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. J. Kennedy, J. M. Wallace, and P. D. Jones, 2008: A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature, 453, 646649, doi:10.1038/nature06982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tourre, Y. M., S. Paz, Y. Kushnir, and W. B. White, 2010: Low-frequency climate variability in the Atlantic basin during the 20th century. Atmos. Sci. Lett., 11, 180185, doi:10.1002/asl.265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, doi:10.1029/2006GL026894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., C. Smith, and Q. Jiang, 1990: Spatial patterns of atmosphere–ocean interaction in the northern winter. J. Climate, 3, 990998, doi:10.1175/1520-0442(1990)003<0990:SPOAOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weare, B. C., A. R. Navato, and R. E. Newell, 1976: Empirical orthogonal analysis of Pacific sea surface temperatures. J. Phys. Oceanogr., 6, 671678, doi:10.1175/1520-0485(1976)006<0671:EOAOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2011: Statistical Methods in the Atmospheric Sciences. Academic Press, 704 pp.

  • Wu, L., and Coauthors, 2012: Enhanced warming over the global subtropical western boundary currents. Nat. Climate Change, 2, 161166, doi:10.1038/nclimate1353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. E. Huang, J. M. Wallace, B. V. Smoliak, and X. Chen, 2011: On the time-varying trend in global-mean surface temperature. Climate Dyn., 37, 759773, doi:10.1007/s00382-011-1128-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeo, S.-R., S.-W. Yeh, K.-Y. Kim, and W. Kim, 2017: The role of low-frequency variation in the manifestation of warming trend and ENSO amplitude. Climate Dyn., doi:10.1007/s00382-016-3376-0, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2007: Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett., 34, L23708, doi:10.1029/2007GL031601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., J. Li, and X. Zhao, 2010: Sea surface temperature cooling mode in the Pacific cold tongue. J. Geophys. Res., 115, C12042, doi:10.1029/2010JC006501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 891 344 25
PDF Downloads 850 271 19