Bjerknes Compensation in Meridional Heat Transport under Freshwater Forcing and the Role of Climate Feedback

Haijun Yang Laboratory for Climate and Ocean–Atmosphere Studies, and Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Haijun Yang in
Current site
Google Scholar
PubMed
Close
,
Qin Wen Laboratory for Climate and Ocean–Atmosphere Studies, and Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Qin Wen in
Current site
Google Scholar
PubMed
Close
,
Jie Yao Laboratory for Climate and Ocean–Atmosphere Studies, and Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Jie Yao in
Current site
Google Scholar
PubMed
Close
, and
Yuxing Wang National Marine Environmental Forecasting Center, State Oceanology Administration, Beijing, China

Search for other papers by Yuxing Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using a coupled Earth climate model, freshwater forcing experiments are performed to study the Bjerknes compensation (BJC) between meridional atmosphere heat transport (AHT) and meridional ocean heat transport (OHT). Freshwater hosing in the North Atlantic weakens the Atlantic meridional overturning circulation (AMOC) and thus reduces the northward OHT in the Atlantic significantly, leading to a cooling (warming) in the surface layer in the Northern (Southern) Hemisphere. This results in an enhanced Hadley cell and northward AHT. Meanwhile, the OHT in the Indo-Pacific is increased in response to the Hadley cell change, partially offsetting the reduced OHT in the Atlantic. Two compensations occur here: compensation between the AHT and the Atlantic OHT, and that between the Indo-Pacific OHT and the Atlantic OHT. The AHT change undercompensates the OHT change by about 60% in the extratropics, while the former overcompensates the latter by about 30% in the tropics due to the Indo-Pacific change. The BJC can be understood from the viewpoint of large-scale circulation change. However, the intrinsic mechanism of BJC is related to the climate feedback of the Earth system. The authors’ coupled model experiments confirm that the occurrence of BJC is an intrinsic requirement of local energy balance, and local climate feedback determines the extent of BJC, consistent with previous theoretical results. Even during the transient period of climate change, the BJC is well established when the ocean heat storage is slowly varying and its change is much weaker than the net local heat flux change at the ocean surface. The BJC can be deduced from the local climate feedback. Under the freshwater forcing, the overcompensation in the tropics is mainly caused by the positive longwave feedback related to clouds, and the undercompensation in the extratropics is due to the negative longwave feedback related to surface temperature change. Different dominant feedbacks determine different BJC scenarios in different regions, which are in essence constrained by local energy balance.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2017 American Meteorological Society.

Corresponding author: Haijun Yang, hjyang@pku.edu.cn

Abstract

Using a coupled Earth climate model, freshwater forcing experiments are performed to study the Bjerknes compensation (BJC) between meridional atmosphere heat transport (AHT) and meridional ocean heat transport (OHT). Freshwater hosing in the North Atlantic weakens the Atlantic meridional overturning circulation (AMOC) and thus reduces the northward OHT in the Atlantic significantly, leading to a cooling (warming) in the surface layer in the Northern (Southern) Hemisphere. This results in an enhanced Hadley cell and northward AHT. Meanwhile, the OHT in the Indo-Pacific is increased in response to the Hadley cell change, partially offsetting the reduced OHT in the Atlantic. Two compensations occur here: compensation between the AHT and the Atlantic OHT, and that between the Indo-Pacific OHT and the Atlantic OHT. The AHT change undercompensates the OHT change by about 60% in the extratropics, while the former overcompensates the latter by about 30% in the tropics due to the Indo-Pacific change. The BJC can be understood from the viewpoint of large-scale circulation change. However, the intrinsic mechanism of BJC is related to the climate feedback of the Earth system. The authors’ coupled model experiments confirm that the occurrence of BJC is an intrinsic requirement of local energy balance, and local climate feedback determines the extent of BJC, consistent with previous theoretical results. Even during the transient period of climate change, the BJC is well established when the ocean heat storage is slowly varying and its change is much weaker than the net local heat flux change at the ocean surface. The BJC can be deduced from the local climate feedback. Under the freshwater forcing, the overcompensation in the tropics is mainly caused by the positive longwave feedback related to clouds, and the undercompensation in the extratropics is due to the negative longwave feedback related to surface temperature change. Different dominant feedbacks determine different BJC scenarios in different regions, which are in essence constrained by local energy balance.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2017 American Meteorological Society.

Corresponding author: Haijun Yang, hjyang@pku.edu.cn
Save
  • Bjerknes, J., 1964: Atlantic air–sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 1–82.

  • Chang, P., and Coauthors, 2008: Oceanic link between abrupt changes in the North Atlantic Ocean and the African monsoon. Nat. Geosci., 1, 444448, doi:10.1038/ngeo218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W., C. M. Bitz, and J. C. H. Chiang, 2007: Adjustment of the global climate to an abrupt slowdown of the Atlantic meridional overturning circulation. Ocean Circulation: Mechanisms and Impacts, Geophys. Monogr., Vol. 173, Amer. Geophys. Union, 295–313.

    • Crossref
    • Export Citation
  • Czaja, A., and J. Marshall, 2006: The partitioning of poleward heat transport between the atmosphere and ocean. J. Atmos. Sci., 63, 14981511, doi:10.1175/JAS3695.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, H., H. Yang, and J. Yin, 2017: Roles of energy conservation and climate feedback in Bjerknes compensation: A coupled modeling study. Climate Dyn., doi:10.1007/s00382-016-3386-y, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, doi:10.1175/JCLI-D-11-00091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enderton, D., and J. Marshall, 2009: Explorations of atmosphere–ocean–ice climates on an aquaplanet and their meridional energy transports. J. Atmos. Sci., 66, 15931611, doi:10.1175/2008JAS2680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farneti, R., and G. Vallis, 2013: Meridional energy transport in the coupled atmosphere–ocean system: Compensation and partitioning. J. Climate, 26, 71517166, doi:10.1175/JCLI-D-12-00133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58, 943948, doi:10.1175/1520-0469(2001)058<0943:TPOTPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E., and W. Lipscomb, 2010: CICE: The Los Alamos Sea Ice Model, documentation and software user’s manual, version 4.1. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 74 pp.

  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, doi:10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, doi:10.1175/2009JAS2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langen, P. L., and V. A. Alexeev, 2007: Polar amplification as a preferred response in an idealized aquaplanet GCM. Climate Dyn., 29, 305317, doi:10.1007/s00382-006-0221-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laurian, A., A. Lazar, and G. Reverdin, 2009: Generation mechanism of spiciness anomalies: An OGCM analysis in the North Atlantic subtropical gyre. J. Phys. Oceanogr., 39, 10031018, doi:10.1175/2008JPO3896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., K. W. Oleson, M. G. Flanner, C. G. Fletcher, P. J. Lawrence, S. Levis, S. C. Swenson, and G. B. Bonan, 2012: The CCSM4 land simulation, 1850–2005: Assessment of surface climate and new capabilities. J. Climate, 25, 22402260, doi:10.1175/JCLI-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., 1994: A simple model of the mass exchange between the subtropical and tropical ocean. J. Phys. Oceanogr., 24, 11531165, doi:10.1175/1520-0485(1994)024<1153:ASMOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., H. Yang, C. He, and Y. Zhao, 2016: A theory for Bjerknes compensation: The role of climate feedback. J. Climate, 29, 191208, doi:10.1175/JCLI-D-15-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1995: Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature, 378, 165167, doi:10.1038/378165a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marotzke, J., and P. Stone, 1995: Atmospheric transports, the thermohaline circulation, and flux adjustments in a simple coupled model. J. Phys. Oceanogr., 25, 13501364, doi:10.1175/1520-0485(1995)025<1350:ATTTCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2013: Climate change projections in CESM1(CAM5) compared to CCSM4. J. Climate, 26, 62876308, doi:10.1175/JCLI-D-12-00572.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM5.0). NCAR Tech. Rep. NCAR/TN-486+STR, 268 pp. [Available online at www.cesm.ucar.edu/models/cesm1.1/cam/docs/description/cam5_desc.pdf.]

  • Neale, R. B., J. Richter, S. Park, P. Lauritzen, S. Vavrus, P. Rasch, and M. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 51505168, doi:10.1175/JCLI-D-12-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., 1975: Theory of energy-balance climate models. J. Atmos. Sci., 32, 20332043, doi:10.1175/1520-0469(1975)032<2033:TOEBCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., 1984: The small ice cap instability in diffusive climate models. J. Atmos. Sci., 41, 33903395, doi:10.1175/1520-0469(1984)041<3390:TSICII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., C. S. Bretherton, and P. J. Rasch, 2014: Integrating cloud processes in the Community Atmosphere Model, version 5. J. Climate, 27, 68216856, doi:10.1175/JCLI-D-14-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E., and J. Marshall, 2009: Ocean heat transport, sea ice, and multiple climate states: Insights from energy balance models. J. Atmos. Sci., 66, 28282843, doi:10.1175/2009JAS3039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E., and D. Ferreira, 2013: Ocean heat transport and water vapor greenhouse in a warm equable climate: A new look at the low gradient paradox. J. Climate, 26, 21172136, doi:10.1175/JCLI-D-11-00547.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, J., S. M. Kang, and D. M. Frierson, 2014: Sensitivity of intertropical convergence zone movement to the latitudinal position of thermal forcing. J. Climate, 27, 30353042, doi:10.1175/JCLI-D-13-00691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaffrey, L., and R. Sutton, 2006: Bjerknes compensation and the decadal variability of the energy transports in a coupled climate model. J. Climate, 19, 11671181, doi:10.1175/JCLI3652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. D., and Coauthors, 2010: The Parallel Ocean Program (POP) reference manual. Los Alamos National Laboratory Tech. Rep. LAUR-10-01853, 140 pp. [Available online at http://www.cesm.ucar.edu/models/ccsm4.0/pop/.]

  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387, doi:10.1175/JCLI3689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., D. Seidov, and B. J. Haupt, 2007: Climate response to external sources of freshwater: North Atlantic versus the Southern Ocean. J. Climate, 20, 436448, doi:10.1175/JCLI4015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and H. Goosse, 2004: Is the wind stress forcing essential for the meridional overturning circulation? Geophys. Res. Lett., 31, L04303, doi:10.1029/2003GL018777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443, doi:10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., and R. Farneti, 2009: Meridional energy transport in the coupled atmosphere–ocean system: Scaling and numerical experiments. Quart. J. Roy. Meteor. Soc., 135, 16431660, doi:10.1002/qj.498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Swaluw, E., S. S. Drijfhout, and W. Hazeleger, 2007: Bjerknes compensation at high northern latitudes: The ocean forcing the atmosphere. J. Climate, 20, 60236032, doi:10.1175/2007JCLI1562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vellinga, M., and P. Wu, 2008: Relations between northward ocean and atmosphere energy transports in a coupled climate model. J. Climate, 21, 561575, doi:10.1175/2007JCLI1754.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., F. He, Z. Liu, and C. Li, 2007: Atmospheric teleconnections of tropical Atlantic variability: Interhemispheric, tropical–extratropical, and cross-basin interactions. J. Climate, 20, 856870, doi:10.1175/JCLI4019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2005: The total meridional heat flux and its oceanic and atmospheric partition. J. Climate, 18, 43744380, doi:10.1175/JCLI3539.1.

  • Yang, H., and H. Dai, 2015: Effect of wind forcing on the meridional heat transport in a coupled climate model: Equilibrium response. Climate Dyn., 45, 14511470, doi:10.1007/s00382-014-2393-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., Y. Wang, and Z. Liu, 2013: A modeling study of the Bjerknes compensation in the meridional heat transport in a freshening ocean. Tellus, 65A, 18480, http://dx.doi.org/10.3402/tellusa.v65i0.18480.

    • Search Google Scholar
    • Export Citation
  • Yang, H., Q. Li, K. Wang, Y. Sun, and D. Sun, 2015a: Decomposing the meridional heat transport in the climate system. Climate Dyn., 44, 27512768, doi:10.1007/s00382-014-2380-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., Y. Zhao, Z. Liu, Q. Li, F. He, and Q. Zhang, 2015b: Heat transport compensation in atmosphere and ocean over the past 22,000 years. Sci. Rep., 5, 16661, doi:10.1038/srep16661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., K. Wang, H. Dai, Y. Wang, and Q. Li, 2016a: Wind effect on the Atlantic meridional overturning circulation via sea ice and vertical diffusion. Climate Dyn., 46, 33873403, doi:10.1007/s00382-015-2774-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., Y. Zhao, and Z. Liu, 2016b: Understanding Bjerknes compensation in atmosphere and ocean heat transports using a coupled box model. J. Climate, 29, 21452160, doi:10.1175/JCLI-D-15-0281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 18531860, doi:10.1175/JCLI3460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., S. M. Kang, and I. M. Held, 2010: Sensitivity of climate change induced by weakening of the Atlantic meridional overturning circulation to cloud feedback. J. Climate, 23, 378389, doi:10.1175/2009JCLI3118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., H. Yang, and Z. Liu, 2016: Assessing Bjerknes compensation for climate variability and its time-scale dependence. J. Climate, 29, 55015512, doi:10.1175/JCLI-D-15-0883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 467 144 23
PDF Downloads 276 101 16