Estimating Decadal Predictability for the Southern Ocean Using the GFDL CM2.1 Model

Liping Zhang Atmospheric and Oceanic Science, Princeton University, Princeton, New Jersey
NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Liping Zhang in
Current site
Google Scholar
PubMed
Close
,
Thomas L. Delworth NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Thomas L. Delworth in
Current site
Google Scholar
PubMed
Close
,
Xiaosong Yang NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
University Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Xiaosong Yang in
Current site
Google Scholar
PubMed
Close
,
Richard G. Gudgel NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Richard G. Gudgel in
Current site
Google Scholar
PubMed
Close
,
Liwei Jia Atmospheric and Oceanic Science, Princeton University, Princeton, New Jersey
NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Liwei Jia in
Current site
Google Scholar
PubMed
Close
,
Gabriel A. Vecchi NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Gabriel A. Vecchi in
Current site
Google Scholar
PubMed
Close
, and
Fanrong Zeng NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Fanrong Zeng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study explores the potential predictability of the Southern Ocean (SO) climate on decadal time scales as represented in the GFDL CM2.1 model using prognostic methods. Perfect model predictability experiments are conducted starting from 10 different initial states, showing potentially predictable variations of Antarctic bottom water (AABW) formation rates on time scales as long as 20 years. The associated Weddell Sea (WS) subsurface temperatures and Antarctic sea ice have potential predictability comparable to that of the AABW cell. The predictability of sea surface temperature (SST) variations over the WS and the SO is somewhat smaller, with predictable scales out to a decade. This reduced predictability is likely associated with stronger damping from air–sea interaction. As a complement to this perfect predictability study, the authors also make hindcasts of SO decadal variability using the GFDL CM2.1 decadal prediction system. Significant predictive skill for SO SST on multiyear time scales is found in the hindcast system. The success of the hindcasts, especially in reproducing observed surface cooling trends, is largely due to initializing the state of the AABW cell. A weak state of the AABW cell leads to cooler surface conditions and more extensive sea ice. Although there are considerable uncertainties regarding the observational data used to initialize the hindcasts, the consistency between the perfect model experiments and the decadal hindcasts at least gives some indication as to where and to what extent skillful decadal SO forecasts might be possible.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liping Zhang, liping.zhang@noaa.gov

Abstract

This study explores the potential predictability of the Southern Ocean (SO) climate on decadal time scales as represented in the GFDL CM2.1 model using prognostic methods. Perfect model predictability experiments are conducted starting from 10 different initial states, showing potentially predictable variations of Antarctic bottom water (AABW) formation rates on time scales as long as 20 years. The associated Weddell Sea (WS) subsurface temperatures and Antarctic sea ice have potential predictability comparable to that of the AABW cell. The predictability of sea surface temperature (SST) variations over the WS and the SO is somewhat smaller, with predictable scales out to a decade. This reduced predictability is likely associated with stronger damping from air–sea interaction. As a complement to this perfect predictability study, the authors also make hindcasts of SO decadal variability using the GFDL CM2.1 decadal prediction system. Significant predictive skill for SO SST on multiyear time scales is found in the hindcast system. The success of the hindcasts, especially in reproducing observed surface cooling trends, is largely due to initializing the state of the AABW cell. A weak state of the AABW cell leads to cooler surface conditions and more extensive sea ice. Although there are considerable uncertainties regarding the observational data used to initialize the hindcasts, the consistency between the perfect model experiments and the decadal hindcasts at least gives some indication as to where and to what extent skillful decadal SO forecasts might be possible.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liping Zhang, liping.zhang@noaa.gov
Save
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., G. J. van Oldenborgh, S. S. Drijfhout, B. Wouters, and C. A. Katsman, 2013: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci., 6, 376379, doi:10.1038/ngeo1767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., G. J. van Oldenborgh, and C. A. Katsman, 2015: The effect of increased fresh water from Antarctic ice shelves on future trends in Antarctic sea ice. Ann. Glaciol., 56, 120126, doi:10.3189/2015AoG69A001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 2004: Long time-scale potential predictability in an ensemble of coupled climate models. Climate Dyn., 23, 2944, doi:10.1007/s00382-004-0419-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 2011: Decadal potential predictability of twenty-first century climate. Climate Dyn., 36, 11191133, doi:10.1007/s00382-010-0747-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and Coauthors, 2009: World Ocean Database 2009. NOAA Atlas NESDIS 66, 217 pp. [Available online at ftp://ftp.nodc.noaa.gov/pub/WOD09/DOC/wod09_intro.pdf.]

  • Cavalieri, D. J., and C. L. Parkinson, 2008: Antarctic sea ice variability and trends, 1979–2006. J. Geophys. Res., 113, C07004, doi:10.1029/2007JC004564.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., and F. Nishio, 2008: Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res., 113, C02S07, doi:10.1029/2007JC004257.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., and M. K. Tippett, 2009: Average predictability time. Part I: Theory. J. Atmos. Sci., 66, 11721187, doi:10.1175/2008JAS2868.1.

  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661676, doi:10.1007/s003820000075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galbraith, E. D., and Coauthors, 2011: Climate variability and radiocarbon in the CM2Mc Earth system model. J. Climate, 24, 42304254, doi:10.1175/2011JCLI3919.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, L., and Coauthors, 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245272, doi:10.1007/s00382-012-1481-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1978: Deep Antarctic convection west of Maud Rise. J. Phys. Oceanogr., 8, 600612, doi:10.1175/1520-0485(1978)008<0600:DACWOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1982: Weddell Deep Water variability. J. Mar. Res., 40, 199217.

  • Griffies, S. M., and K. Bryan, 1997: A predictability study of simulated North Atlantic multidecadal variability. Climate Dyn., 13, 459487, doi:10.1007/s003820050177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, M. Imhoff, W. Lawrence, D. Easterling, T. Peterson, and T. Karl, 2001: A closer look at United States and global surface temperature change. J. Geophys. Res., 106, 23 94723 963, doi:10.1029/2001JD000354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. R., and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci., 5, 872875, doi:10.1038/ngeo1627.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., and C. Deser, 2007: North Pacific decadal variability in the Community Climate System model version 2. J. Climate, 20, 24162433, doi:10.1175/JCLI4103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., T. Martin, and W. Park, 2013: Southern Ocean sector centennial climate variability and recent decadal trends. J. Climate, 26, 77677782, doi:10.1175/JCLI-D-12-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Bars, D., J. P. Viebahn, and H. A. Dijkstra, 2016: A Southern Ocean mode of multidecadal variability. Geophys. Res. Lett., 43, 21022110, doi:10.1002/2016GL068177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, doi:10.1175/JPO3130.1.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, T., W. Park, and M. Latif, 2013: Multi-centennial variability controlled by Southern Ocean convection in the Kiel Climate Model. Climate Dyn., 40, 20052022, doi:10.1007/s00382-012-1586-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matear, R. J., T. J. O’Kane, J. S. Risbey, and M. Chamberlain, 2015: Sources of heterogeneous variability and trends in Antarctic sea-ice. Nat. Commun., 6, 8656, doi:10.1038/ncomms9656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monselesan, D. P., T. J. O’Kane, J. S. Risbey, and J. A. Church, 2015: Internal climate memory in observations and models. Geophys. Res. Lett., 42, 12321242, doi:10.1002/2014GL062765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., R. J. Matear, M. A. Chamberlain, J. S. Risbey, B. M. Sloyan, and I. Horenko, 2013: Decadal variability in an OGCM Southern Ocean: Intrinsic modes, forced modes and metastable states. Ocean Modell., 69, 121, doi:10.1016/j.ocemod.2013.04.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 289 pp.

  • Pohlmann, H., M. Botzet, M. Latif, A. Roesch, M. Wild, and P. Tschuck, 2004: Estimating the decadal predictability of a coupled AOGCM. J. Climate, 17, 44634472, doi:10.1175/3209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and K. L. Smith, 2013: Can natural variability explain observed Antarctic sea ice trends? New modeling evidence from CMIP5. Geophys. Res. Lett., 40, 31953199, doi:10.1002/grl.50578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purich, A., W. Cai, M. H. England, and T. Cowan, 2016: Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes. Nat. Commun., 7, 10409, doi:10.1038/ncomms10409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 63366351, doi:10.1175/2010JCLI3682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2012: Global contraction of Antarctic Bottom Water between the 1980s and 2000s. J. Climate, 25, 58305844, doi:10.1175/JCLI-D-11-00612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robson, J. I., R. T. Sutton, and D. M. Smith, 2013: Predictable climate impacts of the decadal changes in the ocean in the 1990s. J. Climate, 26, 63296339, doi:10.1175/JCLI-D-12-00827.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., R. Eade, and H. Pohlmann, 2013: A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Climate Dyn., 41, 33253338, doi:10.1007/s00382-013-1683-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 24662477, doi:10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

    • Crossref
    • Export Citation
  • Yang, X., and Coauthors, 2013: A predictable AMO-like pattern in the GFDL fully coupled ensemble initialized and decadal forecasting system. J. Climate, 26, 650661, doi:10.1175/JCLI-D-12-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. L. Delworth, 2015: Analysis of the characteristics and mechanisms of the Pacific decadal oscillation in a suite of coupled models from the Geophysical Fluid Dynamics Laboratory. J. Climate, 28, 76787701, doi:10.1175/JCLI-D-14-00647.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. L. Delworth, 2016a: Simulated response of the Pacific decadal oscillation to climate change. J. Climate, 29, 59996018, doi:10.1175/JCLI-D-15-0690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. L. Delworth, 2016b: Impact of the Antarctic bottom water formation on the Weddell Gyre and its northward propagation characteristics in GFDL CM2.1 model. J. Geophys. Res. Oceans, 121, 58255846, doi:10.1002/2016JC011790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., T. L. Delworth, and F. Zeng, 2017: The impact of multidecadal Atlantic meridional overturning circulation variations on the Southern Ocean. Climate Dyn., 48, 20652085, doi:10.1007/s00382-016-3190-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. J. Harrison, A. Rosati, and A. T. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 35413564, doi:10.1175/MWR3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zunz, V., H. Goosse, and F. Massonnet, 2013: How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent? Cryosphere, 7, 451468, doi:10.5194/tc-7-451-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 928 395 35
PDF Downloads 201 85 5