Impact of Anthropogenic Climate Change on the East Asian Summer Monsoon

Claire Burke Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Claire Burke in
Current site
Google Scholar
PubMed
Close
and
Peter Stott Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Peter Stott in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The East Asian summer monsoon (EASM) is important for bringing rainfall to large areas of China. Historically, variations in the EASM have had major impacts including flooding and drought. The authors present an analysis of the impact of anthropogenic climate change on EASM rainfall in eastern China using a newly updated attribution system. The results suggest that anthropogenic climate change has led to an overall decrease in total monsoon rainfall over the past 65 years and an increased number of dry days. However, the model also predicts that anthropogenic forcings have caused the most extreme heavy rainfall events to become shorter in duration and more intense. With the potential for future changes in aerosol and greenhouse gas emissions, historical trends in monsoon rainfall may not be indicative of future changes, although extreme rainfall is projected to increase over East Asia with continued warming in the region.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

Corresponding author: Claire Burke, cburkesci@gmail.com

Abstract

The East Asian summer monsoon (EASM) is important for bringing rainfall to large areas of China. Historically, variations in the EASM have had major impacts including flooding and drought. The authors present an analysis of the impact of anthropogenic climate change on EASM rainfall in eastern China using a newly updated attribution system. The results suggest that anthropogenic climate change has led to an overall decrease in total monsoon rainfall over the past 65 years and an increased number of dry days. However, the model also predicts that anthropogenic forcings have caused the most extreme heavy rainfall events to become shorter in duration and more intense. With the potential for future changes in aerosol and greenhouse gas emissions, historical trends in monsoon rainfall may not be indicative of future changes, although extreme rainfall is projected to increase over East Asia with continued warming in the region.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

Corresponding author: Claire Burke, cburkesci@gmail.com
Save
  • Allen, M., and W. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

  • Ban, N., J. Schmidli, and C. Schar, 2015: Heavy precipitation in a changing climate: Does short term summer precipitation increase faster? Geophys. Res. Lett., 42, 11651172, doi:10.1002/2014GL062588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, C., P. Stott, Y. Sun, and A. Ciavarella, 2016: Attribution of extreme rainfall in southeast China during May 2015 [in “Explaining Extreme Events of 2015”]. Bull. Amer. Meteor. Soc., 97 (Suppl.), 9296, doi:10.1175/BAMS-D-16-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136, doi:10.1017/CBO9781107415324.024.

    • Search Google Scholar
    • Export Citation
  • Christidis, N., P. A. Stott, A. A. Scaife, A. Arribas, G. S. Jones, D. Copset, J. R. Knight, and W. Tennant, 2013: A new HadGEM3-A-based system for attribution of weather- and climate-related extreme events. J. Climate, 26, 27562783, doi:10.1175/JCLI-D-12-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136, doi:10.1017/CBO9781107415324.024.

    • Crossref
    • Export Citation
  • Demory, M., P. Vidale, M. J. Roberts, P. Berrisford, J. Strachan, R. Schiemann, and M. S. Mizielinski, 2014: The role of horizontal resolution in simulating drivers of the global hydrological cycle. Climate Dyn., 42, 22012225, doi:10.1007/s00382-013-1924-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, J., and H. Xu, 2015: Nonlinear effect on the East Asian summer monsoon due to two coexisting anthropogenic forcing factors in eastern China: An AGCM study. Climate Dyn., 46, 37673784, doi:10.1007/s00382-015-2803-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., and J. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, doi:10.1007/s00703-005-0125-z.

  • Donat, M., A. Lowry, L. Alexander, P. O’Gorman, and N. Maher, 2016: More extreme precipitation in the world’s dry and wet regions. Nat. Climate Change, 6, 508513, doi:10.1038/nclimate2941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, E., and R. Knutti, 2016: Observed heavy precipitation increase confirms theory and early models. Nat. Climate Change, 6, 986991, doi:10.1038/nclimate3110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, A., and K. Hennessy, 1995: Potential impacts of global warming on the frequency and magnitude of heavy precipitation. Nat. Hazards, 11, 283303, doi:10.1007/BF00613411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, C., and L. Dan, 2014: Trends in the different grades of precipitation over south China during 1960–2010 and possible link with anthropogenic aerosols. Adv. Atmos. Sci., 31, 480491, doi:10.1007/s00376-013-2102-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, J., W. Qian, X. Lin, and D. Chan, 2008: Trends in graded precipitation in China from 1961 to 2000. Adv. Atmos. Sci., 25, 267287, doi:10.1007/s00376-008-0267-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gemmer, M., S. Becker, and T. Jiang, 2004: Observed monthly precipitation trends in China 1951–2002. Theor. Appl. Climatol., 77, 3945, doi:10.1007/s00704-003-0018-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Z., and T. Zhou, 2012: Assessing the quality of APHRODITE high-resolution daily precipitation dataset over contiguous China. Chin. J. Atmos. Sci., 36, 361373.

    • Search Google Scholar
    • Export Citation
  • Held, I., and B. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

  • Hsu, H., T. Zhou, and J. Matsumoto, 2014: East Asian, Indochina and western North Pacific summer monsoon—An update. Asia-Pac. J. Atmos. Sci., 50, 4568, doi:10.1007/s13143-014-0027-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, S., and Coauthors, 2016: The resolution sensitivity of the South Asian monsoon and Indo-Pacific in a global 0.35° AGCM. Climate Dyn., 46, 807831, doi:10.1007/s00382-015-2614-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., M. Xu, M. Henderson, and Y. Qi, 2005: Observed trends of precipitation amount, frequency, and intensity in China, 1960–2000. J. Geophys. Res., 110, D08103, doi:10.1029/2004JD004864.

    • Search Google Scholar
    • Export Citation
  • Ma, S., and Coauthors, 2017: Detectable anthropogenic shift toward heavy precipitation over eastern China. J. Climate, 30, 13811396, doi:10.1175/JCLI-D-16-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, J., and W. Ingram, 1992: Carbon dioxide and climate: Mechanisms of changes in cloud. J. Climate, 5, 521, doi:10.1175/1520-0442(1992)005<0005:CDACMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777, doi:10.1073/pnas.0907610106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, C., and T. Zhou, 2014: Multidecadal variability of north China aridity and its relationship to PDO during 1900–2010. J. Climate, 27, 12101222, doi:10.1175/JCLI-D-13-00235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, C., J. Yu, and G. Chen, 2014: Decadal summer drought frequency in China: The increasing influence of the Atlantic multi-decadal oscillation. Environ. Res. Lett., 9, 124004, doi:10.1088/1748-9326/9/12/124004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, W., and A. Qin, 2008: Precipitation division and climate shift in China from 1960 to 2000. Theor. Appl. Climatol., 93, 117, doi:10.1007/s00704-007-0330-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Y., D. Gong, J. Fan, L. R. Leung, R. Bennartz, D. Chen, and W. Wang, 2009: Heavy pollution suppresses light rain in China: Observations and modeling. J. Geophys. Res., 114, D00K02, doi:10.1029/2008JD011575.

    • Search Google Scholar
    • Export Citation
  • Rayner, N., D. Parker, E. Horton, L. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan, 2003: Global analysis of sea surface temperature, sea ice, and night marine air temperature since late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Schiemann, R., M.-E. Demory, M. S. Mizielinski, M. J. Roberts, L. C. Shaffrey, J. Strachan, and P. Vidale, 2014: The sensitivity of the tropical circulation and Maritime Continent precipitation to climate model resolution. Climate Dyn., 42, 24552468, doi:10.1007/s00382-013-1997-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, B., T. Jiang, and W. Jin, 2006: Recent trends in observed temperature and precipitation extremes in the Yangtze River basin, China. Theor. Appl. Climatol., 83, 139151, doi:10.1007/s00704-005-0139-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K., R. Stouffer, and G. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K., A. Dai, R. Rasmussen, and D. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 11, 283303, doi:10.1175/BAMS-84-9-1205.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., M. Roberts, P. L. Vidale, M. S. Mizielinski, M.-E. Demory, R. Schiemann, J. Strachan, and C. Bain, 2016: Sahel decadal rainfall variability and the role of model horizontal resolution. Geophys. Res. Lett., 43, 326333, doi:10.1002/2015GL066690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and L. Zhou, 2005: Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys. Res. Lett., 32, L09707, doi:10.1029/2005GL023769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., L. Alexander, and F. Zweirs, 2013: Global increasing trends in annual maximum daily precipitation. J. Climate, 26, 39043918, doi:10.1175/JCLI-D-12-00502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., N. Christidis, and P. Stott, 2013: Anthropogenic impact on Earth’s hydrological cycle. Nat. Climate Change, 3, 807810, doi:10.1038/nclimate1932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, C., L. Zhang, and L. Song, 2016: Robust increase in extreme summer rainfall intensity during the past four decades observed in China. Nat. Sci. Rep., 6, 38506, doi:10.1038/srep38506.

    • Search Google Scholar
    • Export Citation
  • Xue, F., Q. Zeng, R. Huang, C. Li, R. Lu, and T. Zhou, 2015: Recent advances in monsoon studies. Adv. Atmos. Sci., 32, 206229, doi:10.1007/s00376-014-0015-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, doi:10.1175/BAMS-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P., X. Zhang, H. Wan, and X. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 10961108, doi:10.1175/JCLI-3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., H. Wang, W. Zhou, and J. Ma, 2011: Recent changes in summer precipitation pattern in east China and the background circulation. Climate Dyn., 36, 14631473, doi:10.1007/s00382-010-0852-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1782 482 59
PDF Downloads 874 195 13