Impacts of Agulhas Leakage on the Tropical Atlantic Western Boundary Systems

P. Castellanos Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil, and Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain

Search for other papers by P. Castellanos in
Current site
Google Scholar
PubMed
Close
,
E. J. D. Campos Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by E. J. D. Campos in
Current site
Google Scholar
PubMed
Close
,
J. Piera Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain

Search for other papers by J. Piera in
Current site
Google Scholar
PubMed
Close
,
O. T. Sato Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by O. T. Sato in
Current site
Google Scholar
PubMed
Close
, and
M. A. F. Silva Dias Instituto de Astronomia, Geofísica e Ciencias Atmosféricas, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by M. A. F. Silva Dias in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The influx of warmer and saltier Indian Ocean waters into the Atlantic—the Agulhas leakage—is now recognized to play an important role in the global thermohaline circulation and climate. In this study the results of a ⅞° simulation with the Hybrid Coordinate Ocean Model, which exhibit an augmentation in the Agulhas leakage, is investigated. This increase in the leakage ought to have an impact on the meridional oceanic volume and heat transports in the Atlantic Ocean. Significant linear trends found in the integrated transport at 20°, 15°, and 5°S correlate well with decadal fluctuations of the Agulhas leakage. The augmented transport also seems to be related to an increase in the latent heat flux observed along the northeastern coastline of Brazil since 2003. This study shows that the precipitation on the Brazilian coast has been increasing since 2005, at the same location and with the same regime shift observed for the latent heat flux and the volume transport. This suggests that the increase of the Agulhas transport affects the western boundary system of the tropical Atlantic Ocean, which is directly related to an increase in the precipitation and latent heat flux along the western coast.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0878.s1.

Corresponding author: Paola Castellanos, castellanos@icm.csic.es

Abstract

The influx of warmer and saltier Indian Ocean waters into the Atlantic—the Agulhas leakage—is now recognized to play an important role in the global thermohaline circulation and climate. In this study the results of a ⅞° simulation with the Hybrid Coordinate Ocean Model, which exhibit an augmentation in the Agulhas leakage, is investigated. This increase in the leakage ought to have an impact on the meridional oceanic volume and heat transports in the Atlantic Ocean. Significant linear trends found in the integrated transport at 20°, 15°, and 5°S correlate well with decadal fluctuations of the Agulhas leakage. The augmented transport also seems to be related to an increase in the latent heat flux observed along the northeastern coastline of Brazil since 2003. This study shows that the precipitation on the Brazilian coast has been increasing since 2005, at the same location and with the same regime shift observed for the latent heat flux and the volume transport. This suggests that the increase of the Agulhas transport affects the western boundary system of the tropical Atlantic Ocean, which is directly related to an increase in the precipitation and latent heat flux along the western coast.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0878.s1.

Corresponding author: Paola Castellanos, castellanos@icm.csic.es

Supplementary Materials

    • Supplemental Materials (RAR 1.39 MB)
Save
  • Beal, L. M., and Coauthors, 2011: The role of the Agulhas system in ocean circulation and climate. Nature, 472, 429436, doi:10.1038/nature09983.

  • Biastoch, A., and C. W. Böning, 2013: Anthropogenic impact on Agulhas leakage. Geophys. Res. Lett., 40, 11381143, doi:10.1002/grl.50243.

  • Biastoch, A., C. W. Böning, and J. R. E. Lutjeharms, 2008: Agulhas leakage dynamics affects decadal variability in Atlantic over-turning circulation. Nature, 456, 489492, doi:10.1038/nature07426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biastoch, A., C. W. Böning, F. U. Schwarzkopf, and J. R. E. Lutjeharms, 2009: Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies. Nature, 462, 495499, doi:10.1038/nature08519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic–Cartesian coordinates. Ocean Modell., 4, 5588, doi:10.1016/S1463-5003(01)00012-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryden, H., H. R. Longworth, and S. A. Cunningham, 2005: Slowing of the Atlantic meridional overturning circulation at 25°N. Nature, 438, 655657, doi:10.1038/nature04385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castellanos, P., E. J. D. Campos, I. Giddy, and W. Santis, 2016: Inter-comparison studies between high-resolution HYCOM simulation and observational data: The South Atlantic and the Agulhas leakage system. J. Mar. Syst., 159, 7688, doi:10.1016/j.jmarsys.2016.02.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Ruijter, W. P. M., A. Biastoch, S. S. Drijfhout, J. R. E. Lutjeharms, R. P. Matano, T. Pichevin, P. J. van Leeuwen, and W. Weijer, 1999: Indian–Atlantic interocean exchange: Dynamics, estimation and impact. J. Geophys. Res., 104, 20 88520 910, doi:10.1029/1998JC900099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, S., S. Garzoli, and M. Baringer, 2011: The role of interocean exchanges on decadal variations of the meridional heat transport in the South Atlantic. J. Phys. Oceanogr., 41, 14981511, doi:10.1175/2011JPO4549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C., E. F. Bradley, J. Hare, A. Grachev, and J. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garzoli, S. L., and R. Matano, 2011: The South Atlantic and the Atlantic meridional overturning circulation. Deep-Sea Res. II, 58, 18371847, doi:10.1016/j.dsr2.2010.10.063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R., E. Campos, W. Hazeleger, and C. Severijns, 2008: Influence of the meridional overturning circulation on tropical Atlantic climate and variability. J. Climate, 21, 14031416, doi:10.1175/2007JCLI1930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R., E. Campos, S. Drijfhout, W. Hazeleger, and C. Severijns, 2011: Impacts of interruption of the Agulhas leakage on the tropical Atlantic in coupled ocean–atmosphere simulations. Climate Dyn., 36, 9891003, doi:10.1007/s00382-009-0692-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., 2004: Evaluation of vertical coordinate and vertical mixing algorithms in the Hybrid-Coordinate Ocean Model (HYCOM). Ocean Modell., 7, 285322, doi:10.1016/j.ocemod.2003.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hounsou-gbo, G. A., M. Araujo, B. Bourlès, D. Veleda, and J. Servain, 2015: Tropical contributions to strong rainfall variability along the Northeast Brazilian coast. Adv. Meteor., 2015, 902084, doi:10.1155/2015/902084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knorr, G., and G. Lohmann, 2003: Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Nature, 424, 532536, doi:10.1038/nature01855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., C. M. James, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air–sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 17221735, doi:10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loveday, B. R., J. V. Durgadoo, C. J. Reason, A. Biastoch, and P. Penven, 2014: Decoupling of the Agulhas leakage from the Agulhas Current. J. Phys. Oceanogr., 44, 17761797, doi:10.1175/JPO-D-13-093.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodionov, S., 2004: A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett., 31, L09204, doi:10.1029/2004GL019448.

  • Rouault, M., P. Penven, and B. Pohl, 2009: Warming in the Agulhas Current system since the 1980s. Geophys. Res. Lett., 36, L12602, doi:10.1029/2009GL037987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rühs, S., J. V. Durgadoo, E. Behrens, and A. Biastoch, 2013: Advective timescales and pathways of Agulhas leakage. Geophys. Res. Lett., 40, 39974000, doi:10.1002/grl.50782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speich, S., and F. Dehairs, 2008: Cruise Report MD 166 BONUS-GOODHOPE. Laboratoire de Physique des Oceans, 243 pp.

  • Speich, S., B. Blanke, and G. Madec, 2001: Warm and cold water routes of an O.G.C.M. thermohaline conveyor belt. Geophys. Res. Lett., 28, 311314, doi:10.1029/2000GL011748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stramma, L., and M. England, 1999: On the water masses and mean circulation of the South Atlantic Ocean. J. Geophys. Res., 104, 20 86320 883, doi:10.1029/1999JC900139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Sebille, E., P. J. van Leeuwen, A. Biastoch, and W. P. M. de Ruijter, 2010: Flux comparison of Eulerian and Lagrangian estimates of Agulhas leakage: A case study using a numerical model. Deep Sea Res., 57, 319327, doi:10.1016/j.dsr.2009.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weijer, W., W. P. M. De Ruijter, A. Sterl, and S. Drijfhout, 2002: Response of the Atlantic overturning circulation to South Atlantic sources of buoyancy. Global Planet. Change, 34, 293311, doi:10.1016/S0921-8181(02)00121-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2011: The decadal mean ocean circulation and Sverdrup balance. J. Mar. Res., 69, 417434, doi:10.1357/002224011798765303.

  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the objectively analyzed air–sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux Tech. Rep. OA-2008-01, Woods Hole Oceanographic Institution, 64 pp.

  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 981 575 40
PDF Downloads 392 55 6