• Adachi, Y., and Coauthors, 2013: Basic performance of a new Earth system model of the Meteorological Research Institute (MRI-ESM1). Pap. Meteor. Geophys., 64, 119, doi:10.2467/mripapers.64.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akiyoshi, H., Y. Yamashita, K. Sakamoto, L. B. Zhou, and T. Imamura, 2010: Recovery of stratospheric ozone in calculations by the Center for Climate System Research/National Institute for Environmental Studies chemistry‐climate model under the CCMVal‐REF2 scenario and a no‐climate‐change run. J. Geophys. Res., 115, D19301, doi:10.1029/2009JD012683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Angell, J. K., and J. Korshover, 1964: Quasi-biennial variations in temperature, total ozone, and tropopause height. J. Atmos. Sci., 21, 479492, doi:10.1175/1520-0469(1964)021<0479:QBVITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, doi:10.1029/1999RG000073.

  • Bowman, K. P., 1989: Global patterns of the quasi-biennial oscillation in total ozone. J. Atmos. Sci., 46, 33283343, doi:10.1175/1520-0469(1989)046<3328:GPOTQB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butchart, N., 2014: The Brewer-Dobson circulation. Rev. Geophys., 52, 157184, doi:10.1002/2013RG000448.

  • Butchart, N., A. A. Scaife, J. Austin, S. H. E. Hare, and J. R. Knight, 2003: Quasi-biennial oscillation in ozone in a coupled chemistry-climate model. J. Geophys. Res., 108, 4486, doi:10.1029/2002JD003004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2006: Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Climate Dyn., 27, 727741, doi:10.1007/s00382-006-0162-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chipperfield, M. P., L. J. Gray, J. S. Kinnersley, and J. Zawodny, 1994: A two-dimensional model study of the QBO signal in SAGE II NO2 and O3. Geophys. Res. Lett., 21, 589592, doi:10.1029/94GL00211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cordero, E. C., and T. R. Nathan, 2000: The influence of wave– and zonal mean–ozone feedbacks on the quasi-biennial oscillation. J. Atmos. Sci., 57, 34263442, doi:10.1175/1520-0469(2000)057<3426:TIOWAZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deushi, M., and K. Shibata, 2011: Development of a Meteorological Research Institute chemistry-climate model version 2 for the study of tropospheric and stratospheric chemistry. Pap. Meteor. Geophys., 62, 146, doi:10.2467/mripapers.62.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deushi, M., K. Yoshida, and T. Y. Tanaka, 2014: Data of Chemistry-Climate Model Initiative (CCMI) produced using the MRI-ESM1 model. Centre for Environmental Data Archival. [Available online at http://browse.ceda.ac.uk/browse/badc/wcrp-ccmi/data/CCMI-1/output/MRI.]

  • Diallo, M., B. Legras, and A. Chédin, 2012: Age of stratospheric air in the ERA-Interim. Atmos. Chem. Phys., 12, 12 13312 154, doi:10.5194/acp-12-12133-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1985: A two-dimensional model of the quasi-biennial oscillation. J. Atmos. Sci., 42, 11511160, doi:10.1175/1520-0469(1985)042<1151:ATDMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 2001: Quasi-biennial and subbiennial variations of stratospheric trace constituents derived from HALOE observations. J. Atmos. Sci., 58, 725, doi:10.1175/1520-0469(2001)058<0007:QBASVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebdon, R. A., 1960: Notes on the wind flow at 50 mb in tropical and sub-tropical regions in January 1957 and January 1958. Quart. J. Roy. Meteor. Soc., 86, 540542, doi:10.1002/qj.49708637011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2013: Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) community simulations in support of upcoming ozone and climate assessments. SPARC Newsletter, No. 40, SPARC Office, Toronto, ON, Canada, 4866.

    • Search Google Scholar
    • Export Citation
  • Fadnavis, S., and G. Beig, 2008: Spatiotemporal variation of the ozone QBO in MLS data by wavelet analysis. Ann. Geophys., 26, 37193730, doi:10.5194/angeo-26-3719-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, J. P., and G. L. Garnham, 1962: Australian ozone observations and a suggested 24 month cycle. Tellus, 14A, 378382, doi:10.3402/tellusa.v14i4.9564.

    • Search Google Scholar
    • Export Citation
  • Hasebe, F., 1994: Quasi-biennial oscillations of ozone and diabatic circulation in the equatorial stratosphere. J. Atmos. Sci., 51, 729745, doi:10.1175/1520-0469(1994)051<0729:QBOOOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauchecorne, A., and Coauthors, 2010: Response of tropical stratospheric O3, NO2 and NO3 to the equatorial quasi-biennial oscillation and to temperature as seen from GOMOS/ENVISAT. Atmos. Chem. Phys., 10, 88738879, doi:10.5194/acp-10-8873-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, T. Y. W., 1996: The impact of solar radiation on the quasi-biennial oscillation of ozone in the tropical stratosphere. Geophys. Res. Lett., 23, 32113214, doi:10.1029/96GL03006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., and K. Hamilton, 2013: Weakened stratospheric quasibiennial oscillation driven by increased tropical mean upwelling. Nature, 497, 478481, doi:10.1038/nature12140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lait, L. R., M. R. Schoeberl, and P. A. Newman, 1989: Quasi-biennial modulation of the Antarctic ozone depletion. J. Geophys. Res., 94, 11 55911 571, doi:10.1029/JD094iD09p11559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, J., G. Rottman, J. Harder, and G. Kopp, 2005: SORCE contributions to new understanding of global change and solar variability. Sol. Phys., 230, 2753, doi:10.1007/s11207-005-1527-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leblanc, T., and I. S. McDermid, 2001: Quasi-biennial oscillation signatures in ozone and temperature observed by lidar at Mauna Loa, Hawaii (19.5°N, 155.6°W). J. Geophys. Res., 106, 14 86914 874, doi:10.1029/2001JD900162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., D. M. Shelow, A. M. Thompson, and S. K. Miller, 2010: QBO and ENSO variability in temperature and ozone from SHADOZ, 1998–2005. J. Geophys. Res., 115, D18105, doi:10.1029/2009JD013320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., K. P. Shine, and L. J. Gray, 1995: The role of ozone-induced diabatic heating anomalies in the quasi-biennial oscillation. Quart. J. Roy. Meteor. Soc., 121, 937943, doi:10.1002/qj.49712152411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, X.-D., and J. London, 1986: The quasi-biennial oscillation of ozone in the tropical middle stratosphere: A one-dimensional model. J. Atmos. Sci., 43, 31223137, doi:10.1175/1520-0469(1986)043<3122:TQBOOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Logan, J. A., and Coauthors, 2003: Quasibiennial oscillation in tropical ozone as revealed by ozonesonde and satellite data. J. Geophys. Res., 108, 4244, doi:10.1029/2002JD002170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLandress, C., and T. G. Shepherd, 2009: Simulated anthropogenic changes in the Brewer–Dobson circulation, including its extension to high latitudes. J. Climate, 22, 15161540, doi:10.1175/2008JCLI2679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meul, S., U. Langematz, S. Oberländer, H. Garny, and P. Jöckel, 2014: Chemical contribution to future tropical ozone change in the lower stratosphere. Atmos. Chem. Phys., 14, 29592971, doi:10.5194/acp-14-2959-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, K. R., 1963: Bi-annual variation of atmospheric ozone over the tropics. Quart. J. Roy. Meteor. Soc., 89, 540542, doi:10.1002/qj.49708938209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 1996: Isolation of the ozone QBO in SAGE II data by singular-value decomposition. J. Atmos. Sci., 53, 25462559, doi:10.1175/1520-0469(1996)053<2546:IOTOQI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., 1964: A tentative model of the 26-month oscillation in tropical latitudes. Quart. J. Roy. Meteor. Soc., 90, 441466, doi:10.1002/qj.49709038607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., W. J. Campbell, L. A. Rasmussen, and D. G. Rogers, 1961: Evidence of a downward propagating, annual wind reversal in the equatorial stratosphere. J. Geophys. Res., 66, 813818, doi:10.1029/JZ066i003p00813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shibata, K., and M. Deushi, 2005: Radiative effect of ozone on the quasi-biennial oscillation in the equatorial stratosphere. Geophys. Res. Lett., 32, L24802, doi:10.1029/2005GL023433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shibata, K., and M. Deushi, 2012: Future changes in the quasi-biennial oscillation under a greenhouse gas increase and ozone recovery in transient simulations by a chemistry-climate model. Greenhouse Gases: Emission, Measurement and Management, G. Liu, Ed., InTech, 355–387.

    • Crossref
    • Export Citation
  • Stolarski, R. S., A. R. Douglass, E. E. Remsberg, N. J. Livesey, and J. C. Gille, 2012: Ozone temperature correlations in the upper stratosphere as a measure of chlorine content. J. Geophys. Res., 117, D10305, doi:10.1029/2012JD017456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strahan, S. E., and Coauthors, 2011: Using transport diagnostics to understand chemistry climate model ozone simulations. J. Geophys. Res., 116, D17302, doi:10.1029/2010JD015360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, T. Y., K. Orito, T. T. Sekiyama, K. Shibata, M. Chiba, and H. Tanaka, 2003: MASINGAR, a global tropospheric aerosol chemical transport model coupled with MRI/JMA 98 GCM: Model description. Pap. Meteor. Geophys., 53, 119138, doi:10.2467/mripapers.53.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanii, R., and F. Hasebe, 2002: Ozone feedback stabilizes the quasi-biennial oscillation against volcanic perturbations. Geophys. Res. Lett., 29, 1110, doi:10.1029/2001GL013965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tegtmeier, S., and Coauthors, 2013: SPARC Data Initiative: A comparison of ozone climatologies from international satellite limb sounders. J. Geophys. Res. Atmos., 118, 12 22912 247, doi:10.1002/2013JD019877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., A. L. Allen, S. Lee, S. K. Miller, and J. C. Witte, 2011: Gravity and Rossby wave signatures in the tropical troposphere and lower stratosphere based on Southern Hemisphere Additional Ozonesondes (SHADOZ), 1998–2007. J. Geophys. Res., 116, D05302, doi:10.1029/2009JD013429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, W., M. P. Chipperfield, L. J. Gray, and J. M. Zawodny, 2006: Quasi-biennial oscillation and tracer distributions in a coupled chemistry-climate model. J. Geophys. Res., 111, D20301, doi:10.1029/2005JD006871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsujino, H., T. Motoi, I. Ishikawa, M. Hirabara, H. Nakano, G. Yamanaka, T. Yasuda, and H. Ishizaki, 2010: Reference manual for the Meteorological Research Institute Community Ocean Model (MRI.COM) version 3. MRI Tech. Rep. 59, 241 pp.

  • Witte, J. C., M. R. Schoeberl, A. R. Douglass, and A. M. Thompson, 2008: The quasi-biennial oscillation and annual variations in tropical ozone from SHADOZ and HALOE. Atmos. Chem. Phys., 8, 39293936, doi:10.5194/acp-8-3929-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 2014: Scientific assessment of ozone depletion: 2014. World Meteorological Organization Global Ozone Research and Monitoring Project Rep. 55, 416 pp.

  • Yoshimura, H., and S. Yukimoto, 2008: Development of a simple coupler (Scup) for Earth system modeling. Pap. Meteor. Geophys., 59, 1929, doi:10.2467/mripapers.59.19.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance. J. Meteor. Soc. Japan, 90A, 2364, doi:10.2151/jmsj.2012-A02.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 44 44 15
PDF Downloads 41 41 10

Future Changes in the Ozone Quasi-Biennial Oscillation with Increasing GHGs and Ozone Recovery in CCMI Simulations

View More View Less
  • 1 Meteorological Research Institute, Tsukuba, Japan
  • 2 Meteorological Research Institute, Tsukuba, and Japan Meteorological Agency, Tokyo, Japan
  • 3 Meteorological Research Institute, Tsukuba, Japan
  • 4 Kochi University of Technology, Kami, and Meteorological Research Institute, Tsukuba, Japan
© Get Permissions
Restricted access

Abstract

The future quasi-biennial oscillation (QBO) in ozone in the equatorial stratosphere is examined by analyzing transient climate simulations due to increasing greenhouse gases (GHGs) and decreasing ozone-depleting substances under the auspices of the Chemistry–Climate Model Initiative. The future (1960–2100) and historical (1979–2010) simulations are conducted with the Meteorological Research Institute Earth System Model. Three climate periods, 1960–85 (past), 1990–2020 (present), and 2040–70 (future) are selected, corresponding to the periods before, during, and after ozone depletion. The future ozone QBO is characterized by increases in amplitude by 15%–30% at 5–10 hPa and decreases by 20%–30% at 40 hPa, compared with the past and present climates; the future and present ozone QBOs increase in amplitude by up to 60% at 70 hPa, compared with the past climate. The increased amplitude at 5–10 hPa suggests that the temperature-dependent photochemistry plays an important role in the enhanced future ozone QBO. The weakening of vertical shear in the zonal wind QBO is responsible for the decreased amplitude at 40 hPa in the future ozone QBO. An interesting finding is that the weakened zonal wind QBO in the lowermost tropical stratosphere is accompanied by amplified QBOs in ozone, vertical velocity, and temperature. Further study is needed to elucidate the causality of amplification about the ozone and temperature QBOs under climate change in conditions of zonal wind QBO weakening.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hiroaki Naoe, hnaoe@mri-jma.go.jp

Abstract

The future quasi-biennial oscillation (QBO) in ozone in the equatorial stratosphere is examined by analyzing transient climate simulations due to increasing greenhouse gases (GHGs) and decreasing ozone-depleting substances under the auspices of the Chemistry–Climate Model Initiative. The future (1960–2100) and historical (1979–2010) simulations are conducted with the Meteorological Research Institute Earth System Model. Three climate periods, 1960–85 (past), 1990–2020 (present), and 2040–70 (future) are selected, corresponding to the periods before, during, and after ozone depletion. The future ozone QBO is characterized by increases in amplitude by 15%–30% at 5–10 hPa and decreases by 20%–30% at 40 hPa, compared with the past and present climates; the future and present ozone QBOs increase in amplitude by up to 60% at 70 hPa, compared with the past climate. The increased amplitude at 5–10 hPa suggests that the temperature-dependent photochemistry plays an important role in the enhanced future ozone QBO. The weakening of vertical shear in the zonal wind QBO is responsible for the decreased amplitude at 40 hPa in the future ozone QBO. An interesting finding is that the weakened zonal wind QBO in the lowermost tropical stratosphere is accompanied by amplified QBOs in ozone, vertical velocity, and temperature. Further study is needed to elucidate the causality of amplification about the ozone and temperature QBOs under climate change in conditions of zonal wind QBO weakening.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hiroaki Naoe, hnaoe@mri-jma.go.jp
Save