• Aquila, V., C. I. Garfinkel, P. Newman, L. Oman, and D. Waugh, 2014: Modifications of the quasi-biennial oscillation by a geoengineering perturbation of the stratospheric aerosol layer. Geophys. Res. Lett., 41, 17381744, doi:10.1002/2013GL058818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellouin, N., J. Quaas, J.-J. Morcrette, and O. Boucher, 2013: Estimates of aerosol radiative forcing from the MACC re-analysis. Atmos. Chem. Phys., 13, 20452062, doi:10.5194/acp-13-2045-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedetti, A., and Coauthors, 2009: Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation. J. Geophys. Res., 114, D13205, doi:10.1029/2008JD011115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bian, H., and Coauthors, 2013: Source attributions of pollution to the western Arctic during the NASA ARCTAS field campaign. Atmos. Chem. Phys., 13, 47074721, doi:10.5194/acp-13-4707-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloom, S., L. Takacs, A. DaSilva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, doi:10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bocquet, M., and Coauthors, 2015: Data assimilation in atmospheric chemistry models: Current status and future prospects for coupled chemistry meteorology models. Atmos. Chem. Phys., 15, 53255358, doi:10.5194/acp-15-5325-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Coauthors, 2016: MERRA-2: Initial evaluation of the climate. NASA/TM-2015-104606, Vol. 43, NASA Global Modeling and Assimilation Office, 139 pp. [Available online at https://gmao.gsfc.nasa.gov/pubs/tm/docs/Bosilovich803.pdf.]

  • Buchard, V., and Coauthors, 2014: Evaluation of GEOS-5 sulfur dioxide simulations during the Frostburg, MD 2010 field campaign. Atmos. Chem. Phys., 14, 19291941, doi:10.5194/acp-14-1929-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buchard, V., and Coauthors, 2015: Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis. Atmos. Chem. Phys., 15, 57435760, doi:10.5194/acp-15-5743-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buchard, V., and Coauthors, 2016: Evaluation of the surface PM2.5 in version 1 of the NASA MERRA Aerosol Reanalysis over the United States. Atmos. Environ., 125, 100111, doi:10.1016/j.atmosenv.2015.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buchard, V., and Coauthors, 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies. J. Climate, 30, 68516872, doi:10.1175/JCLI-D-16-0613.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carn, S. A., L. Clarisse, and A. J. Prata, 2016: Multi-decadal satellite measurements of global volcanic degassing. J. Volcanol. Geotherm. Res., 311, 99134, doi:10.1016/j.jvolgeores.2016.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chambers, J., W. Cleveland, B. Kleiner, and P. Tukey, 1983: Graphical Methods for Data Analysis. Wadsworth, 395 pp.

  • Chin, M., and Coauthors, 2002: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J. Atmos. Sci., 59, 461483, doi:10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chýlek, P., and J. A. Coakley, 1974: Aerosol and climate. Science, 183, 7577, doi:10.1126/science.183.4120.75.

  • Cohn, S., A. da Silva, J. Guo, M. Sienkiewicz, and D. Lamich, 1998: Assessing the effects of data selection with the DAO physical-space statistical analysis system. Mon. Wea. Rev., 126, 29132926, doi:10.1175/1520-0493(1998)126<2913:ATEODS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colarco, P., A. da Silva, M. Chin, and T. Diehl, 2010: Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res., 115, D14207, doi:10.1029/2009JD012820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colarco, P., E. P. Nowottnick, C. A. Randles, B. Yi, P. Yang, K.-M. Kim, J. A. Smith, and C. G. Bardeen, 2014: Impact of radiatively interactive dust aerosols in the NASA GEOS-5 climate model: Sensitivity to dust particle shape and refractive index. J. Geophys. Res. Atmos., 119, 753786, doi:10.1002/2013JD020046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darmenov, A. S., and A. da Silva, 2015: The Quick Fire Emissions Dataset (QFED)—Documentation of versions 2.1, 2.2 and 2.4. NASA//TM-2015-104606, Vol. 38, NASA Global Modeling and Assimilation Office, 183 pp. [Available online at https://gmao.gsfc.nasa.gov/pubs/docs/Darmenov796.pdf.]

  • Dee, D. P., and A. M. da Silva, 1999: Maximum-likelihood estimation of forecast and observation error covariance parameters. Part I: Methodology. Mon. Wea. Rev., 127, 18111834, doi:10.1175/1520-0493(1999)127<1822:MLEOFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., L. Rukhovets, R. Todling, A. M. da Silva, and J. W. Lawson, 2001: An adaptive buddy check for observational quality control. Quart. J. Roy. Meteor. Soc., 127, 24512471, doi:10.1002/qj.49712757714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diehl, T., A. Heil, M. Chin, X. Pan, D. Streets, M. Schultz, and S. Kinne, 2012: Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments. Atmos. Chem. Phys. Discuss., 12, 24 89524 954, doi:10.5194/acpd-12-24895-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunagan, S. E., and Coauthors, 2013: Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument technology. Remote Sens., 5, 38723895, doi:10.3390/rs5083872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, B. N., R. V. Martin, A. C. Staudt, R. Yevich, and J. A. Logan, 2003: Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. J. Geophys. Res., 108, 4040, doi:10.1029/2002JD002378.

    • Search Google Scholar
    • Export Citation
  • European Commission, 2010: European Commission/Joint Research Centre (JRC)/Netherlands Environmental Assessment agency (PBL): Emission Database for Global Atmospheric Research (EDGAR), release version 4.1. [Available online at http://edgar.jrc.ec.europa.eu.]

  • European Commission, 2011: European Commission/Joint Research Centre (JRC)/Netherlands Environmental Assessment agency (PBL): Emission Database for Global Atmospheric Research (EDGAR), release version 4.2. [Available online at http://edgar.jrc.ec.europa.eu.]

  • Eyring, V., H. W. Köhler, J. van Aardenne, and A. Lauer, 2005: Emissions from international shipping: 1. The last 50 years. J. Geophys. Res., 110, D17305, doi:10.1029/2004JD005619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H. E., 1985: Relative-humidity parameterization of the Navy Aerosol Model (NAM). Tech. Rep. NTIS ADA1632090, Naval Research Laboratory, 16 pp.

  • Ginoux, P., M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, 2001: Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res., 106, 20 25520 273, doi:10.1029/2000JD000053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giordano, L., and Coauthors, 2015: Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2. Atmos. Environ., 115, 371388, doi:10.1016/j.atmosenv.2015.02.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GMAO, 2015a: inst3_3d_aer_Nv: MERRA-2 3D Aerosol mass mixing ratios. Instantaneous, 3-hourly (model-level, 72 eta levels), version 5.12.4, Global Modeling and Assimilation Office, accessed 2016, doi:10.5067/LTVB4GPCOTK2.

    • Crossref
    • Export Citation
  • GMAO, 2015b: tavg1_2d_aer_Nx: MERRA-2 2D Aerosol diagnostics. Time-averaged, hourly, version 5.12.4, Global Modeling and Assimilation Office, accessed 2016, doi:10.5067/KLICLTZ8EM9D.

    • Crossref
    • Export Citation
  • GMAO, 2015c: tavg1_2d_adg_Nx: MERRA-2 2D Extended aerosol diagnostics. Time-averaged, 3-hourly (column-integrated or surface), version 5.12.4, Global Modeling and Assimilation Office, accessed 2016, doi:10.5067/HM00OHQBHKTP.

    • Crossref
    • Export Citation
  • GMAO, 2015d: inst3_3d_asm_Nv: MERRA-2 3D Assimilated meteorological fields. Instantaneous, 3-hourly (model-level, 72 eta levels), version 5.12.4, Global Modeling and Assimilation Office, accessed 2016, doi:10.5067/WWQSXQ8IVFW8.

  • GMAO, 2015e: tavg3_3d_asm_Nv: MERRA-2 3D Assimilated meteorological fields. Time-averaged, 3-hourly (model-level, 72-eta levels), version 5.12.4, Global Modeling and Assimilation Office, accessed 2016, doi:10.5067/SUOQESM06LPK.

    • Crossref
    • Export Citation
  • GMAO, 2015f: tavg1_2d_rad_Nx: MERRA-2 Radiation diagnostics. Time-averaged, hourly (single-level), version 5.12.4, Global Modeling and Assimilation Office, accessed 2016, doi:10.5067/Q9QMY5PBNV1T.

    • Crossref
    • Export Citation
  • GMAO, 2015g: inst3_3d_gas_Nv: MERRA-2 3D Aerosol mass mixing ratio analysis increments. Instantaneous, 3-hourly (model-level, 72 eta levels), version 5.12.4, Global Modeling and Assimilation Office, accessed 2016, doi:10.5067/96BUID8HGGX5.

    • Crossref
    • Export Citation
  • GMAO, 2015h: inst3_2d_gas_Nx: MERRA-2 2D Aerosol optical depth analysis increments. Instantaneous 3-hourly (column-integrated), version 5.12.4, Global Modeling and Assimilation Office, accessed 2016, doi:10.5067/HNGA0EWW0R09.

    • Crossref
    • Export Citation
  • Gong, S. L., 2003: A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Global Biogeochem. Cycles, 17, 1097, doi:10.1029/2003GB002079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guenther, A., and Coauthors, 1995: A global model of natural volatile organic compound emissions. J. Geophys. Res., 100, 88738892, doi:10.1029/94JD02950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hair, J. W., and Coauthors, 2008: Airborne High Spectral Resolution Lidar for profiling aerosol optical properties. Appl. Opt., 47, 67346752, doi:10.1364/AO.47.006734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., M. J. Foster, A. Walther, and X. Zhao, 2014: The Pathfinder Atmospheres–Extended AVHRR climate dataset. Bull. Amer. Meteor. Soc., 95, 909922, doi:10.1175/BAMS-D-12-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henze, D. K., J. H. Seinfeld, and D. T. Shindell, 2009: Inverse modeling and mapping US air quality influences of inorganic PM2.5 precursor emissions using the adjoint of GEOS-Chem. Atmos. Chem. Phys., 9, 58775903, doi:10.5194/acp-9-5877-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831844, doi:10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, doi:10.1016/S0034-4257(98)00031-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inness, A., and Coauthors, 2013: The MACC reanalysis: An 8 yr data set of atmospheric composition. Atmos. Chem. Phys., 13, 40734109, doi:10.5194/acp-13-4073-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaeglé, L., P. K. Quinn, T. S. Bates, B. Alexander, and J.-T. Lin, 2011: Global distribution of sea salt aerosols: New constraints from in situ and remote sensing observations. Atmos. Chem. Phys., 11, 31373157, doi:10.5194/acp-11-3137-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, R. A., B. J. Gaitley, J. V. Martonchik, D. J. Diner, K. A. Crean, and B. Holben, 2005: Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J. Geophys. Res., 110, D10S04, doi:10.1029/2004JD004706.

    • Search Google Scholar
    • Export Citation
  • Kaiser, J. W., and Coauthors, 2012: Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences, 9, 527554, doi:10.5194/bg-9-527-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessner, A. L., J. Want, R. C. Levy, and P. R. Colarco, 2013: Remote sensing of surface visibility from space: A look at the United States East Coast. Atmos. Environ., 81, 136147, doi:10.1016/j.atmosenv.2013.08.050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinne, S., and Coauthors, 2006: An AeroCom initial assessment—Optical properties in aerosol component modules of global models. Atmos. Chem. Phys., 6, 18151834, doi:10.5194/acp-6-1815-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP Global Data Assimilation System. Wea. Forecasting, 24, 16911705, doi:10.1175/2009WAF2222201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lana, A., and Coauthors, 2011: An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Global Biogeochem. Cycles, 25, GB1004, doi:10.1029/2010GB003850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lary, D., L. A. Remer, D. MacNeil, B. Roscoe, and S. Paradise, 2009: Machine learning and bias correction of MODIS aerosol optical depth. IEEE Geosci. Remote Sens. Lett., 6, 694698, doi:10.1109/LGRS.2009.2023605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levy, R. C., L. A. Remer, S. Mattoo, E. F. Vermote, and Y. J. Kaufman, 2007: Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res., 112, D13211, doi:10.1029/2006JD007811.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, doi:10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., M. I. Mishchenko, I. Geogdzhayev, A. Smirnov, S. M. Sakerin, D. M. Kabanov, and O. A. Ershov, 2004: Global validation of two-channel AVHRR aerosol optical thickness retrievals over the oceans. J. Quant. Spectrosc. Radiat. Transf., 88, 97109, doi:10.1016/j.jqsrt.2004.03.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, P., and Coauthors, 2016: An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences. Geosci. Model Dev., 9, 14891522, doi:10.5194/gmd-9-1489-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marticorena, B., and G. Bergametti, 1995: Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res., 100, 16 41516 430, doi:10.1029/95JD00690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarty, W., L. Coy, R. Gelaro, A. Huang, D. Merkova, E. B. Smith, M. Sienkiewicz, and K. Wargan, 2016: MERRA-2 input observations: Summary and assessment. NASA TM-2016-104606, Vol. 46, NASA Global Modeling and Assimilation Office, 64 pp. [Available online at https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/docs/.]

  • Meng, Z., P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, 2010: Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations. J. Aerosol Sci., 41, 501512, doi:10.1016/j.jaerosci.2010.02.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. L. Takacs, M. J. Suarez, J. Bacmeister, I.-S. Song, and A. Eichmann, 2012: The GEOS-5 atmospheric general circulation model: Mean climate and development from MERRA to Fortuna. NASA/TM-2012-104606, Vol. 28, NASA Global Modeling and Assimilation Office, 117 pp. [Available online at https://gmao.gsfc.nasa.gov/pubs/docs/Molod484.pdf.]

  • Molod, A., L. L. Takacs, M. J. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, doi:10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., and Coauthors, 2009: Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: Forward modeling. J. Geophys. Res., 114, D06206, doi:10.1029/2008JD011235.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., 2009: Consistency between satellite-derived and modeled estimates of the direct aerosol effect. Science, 325, 187190, doi:10.1126/science.1174461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowottnick, E., P. Colarco, R. Ferrare, G. Chen, S. Ismail, B. Anderson, and E. Browell, 2010: Online simulations of mineral dust aerosol distributions: Comparisons to NAMMA observations and sensitivity to dust emission parameterization. J. Geophys. Res., 115, D03202, doi:10.1029/2009JD012692.

    • Search Google Scholar
    • Export Citation
  • Nowottnick, E., P. Colarco, A. da Silva, D. Hlavka, and M. McGill, 2011: The fate of the Saharan dust across the Atlantic and implications for a Central American dust barrier. Atmos. Chem. Phys., 11, 84158431, doi:10.5194/acp-11-8415-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, N. T., A. Ignatov, B. N. Holben, and T. F. Eck, 2000: The lognormal distribution as a reference for reporting aerosol optical depth statistics: Empirical tests using multi-year, multi-site AERONET Sunphotometer data. Geophys. Res. Lett., 27, 33333336, doi:10.1029/2000GL011581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petrenko, M., R. Kahn, M. Chin, A. Soja, T. Kucsera, and Harshvardhan, 2012: The use of satellite-measured aerosol optical depth to constrain biomass burning emissions source strength in the global model GOCART. J. Geophys. Res., 117, D18212, doi:10.1029/2012JD017870.

    • Search Google Scholar
    • Export Citation
  • Putman, W., and S.-J. Lin, 2007: Finite-volume transport on various cubed sphere grids. J. Comput. Phys., 227, 55–78, doi:10.1016/j.jcp.2007.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randerson, J. T., and Coauthors, 2006: The impact of boreal forest fire on climate warming. Science, 314, 11301132, doi:10.1126/science.1132075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randles, C. A., and Coauthors, 2016: The MERRA-2 Aerosol Assimilation. NASA TM-2016-104606, Vol. 45, NASA Global Modeling and Assimilation Office, 132 pp. [Available online at https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/docs/.]

  • Reale, O., K. M. Lau, A. da Silva, and T. Matsui, 2014: Impact of assimilated and interactive aerosol on tropical cyclogenesis. Geophys. Res. Lett., 41, 32823288, doi:10.1002/2014GL059918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., and Q. Liu, 2014: Observation-corrected precipitation estimates in NASA/TM-2014-104606, Vol 35, NASA Global Modeling and Assimilation Office, 24 pp. [Available online at https://gmao.gsfc.nasa.gov/pubs/docs/Reichle734.pdf.]

  • Reichle, R. H., Q. Liu, R. D. Koster, C. S. Draper, S. P. P. Mahanama, and G. S. Partyka, 2017: Land surface precipitation in MERRA-2. J. Climate, 30, 16431664, doi:10.1175/JCLI-D-16-0570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA/TM-2014-104606, Vol 27, NASA Global Modeling and Assimilation Office, 101 pp. [Available online at https://gmao.gsfc.nasa.gov/pubs/docs/Rienecker369.pdf.]

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saide, P. E., G. R. Carmichael, Z. Liu, C. S. Schwartz, H. C. Lin, A. M. da Silva, and E. Hyer, 2013: Aerosol optical depth assimilation for a size-resolved sectional model: Impacts of observationally constrained, multi-wavelength and fine mode retrievals on regional scale analyses and forecasts. Atmos. Chem. Phys., 13, 10 42510 444, doi:10.5194/acp-13-10425-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saide, P. E., and Coauthors, 2015: Revealing important nocturnal and day-to-day variations in fire smoke emissions through a multiplatform inversion. Geophys. Res. Lett., 42, 36093618, doi:10.1002/2015GL063737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakerin, S. M., and D. M. Kabanov, 2002: Spatial inhomogeneities and the spectral behavior of atmospheric aerosol optical depth over the Atlantic Ocean. J. Atmos. Sci., 59, 484500, doi:10.1175/1520-0469(2002)059<0484:SIATSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulz, M., and Coauthors, 2006: Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos. Chem. Phys., 6, 52255246, doi:10.5194/acp-6-5225-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schutgens, N. A. J., T. Miyoshi, T. Takemura, and T. Nakajima, 2010: Applying an ensemble Kalman filter to the assimilation of AERONET observations in a global aerosol transport model. Atmos. Chem. Phys., 10, 25612576, doi:10.5194/acp-10-2561-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarz, J. P., and Coauthors, 2013: Global-scale seasonally resolved black carbon vertical profiles over the Pacific. Geophys. Res. Lett., 40, 55425547, doi:10.1002/2013GL057775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sekiyama, T. T., T. Y. Tanaka, A. Shimizu, and T. Miyoshi, 2010: Data assimilation of CALIPSO aerosol observations. Atmos. Chem. Phys., 10, 3949, doi:10.5194/acp-10-39-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Y., J. Zhang, J. S. Reid, B. Holben, E. J. Hyer, and C. Curtis, 2011: An analysis of the collection 5 MODIS over-ocean aerosol optical depth product for its implication in aerosol assimilation. Atmos. Chem. Phys., 11, 557565, doi:10.5194/acp-11-557-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinozuka, Y., and Coauthors, 2013: Hyperspectral aerosol optical depths from TCAP flights. J. Geophys. Res. Atmos., 118, 12 18012 194, doi:10.1002/2013JD020596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnov, A., B. Holben, T. Eck, and I. Slutsker, 2000: Cloud-screening and quality control algorithms for the AERONET database. Remote Sens. Environ., 73, 337349, doi:10.1016/S0034-4257(00)00109-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnov, A., B. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, 2002: Optical properties of atmospheric aerosol in maritime environments. J. Atmos. Sci., 59, 501523, doi:10.1175/1520-0469(2002)059<0501:OPOAAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnov, A., and Coauthors, 2009: Maritime Aerosol Network as a component of Aerosol Robotic Network. J. Geophys. Res., 114, D06204, doi:10.1029/2008JD011257.

    • Search Google Scholar
    • Export Citation
  • Takacs, L. L., M. J. Suarez, and R. Todling, 2015: Maintaining atmospheric mass and water balance within reanalysis. NASA/TM-2014-104606, Vol. 37, NASA Global Modeling and Assimilation Office, 46 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Takacs737.pdf.]

  • Textor, C., and Coauthors, 2006: Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys., 6, 17771813, doi:10.5194/acp-6-1777-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, P. S. Kasibhatla, and A. F. Arellano Jr., 2006: Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys., 6, 34233441, doi:10.5194/acp-6-3423-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiscombe, W. J., 1980: Improved Mie scattering algorithms. Appl. Opt., 19, 15051509, doi:10.1364/AO.19.001505.

  • Wu, W.-S., R. Purser, and D. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916, doi:10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H., and Coauthors, 2006: A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys., 6, 613666, doi:10.5194/acp-6-613-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and J. S. Reid, 2006: MODIS aerosol product analysis for data assimilation: Assessment of over-ocean level 2 aerosol optical thickness retrievals. J. Geophys. Res., 111, D22207, doi:10.1029/2005JD006898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and J. S. Reid, 2009: An analysis of clear sky and contextual biases using an operational over ocean MODIS aerosol product. Geophys. Res. Lett., 36, L15824, doi:10.1029/2009GL038723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., J. S. Reid, D. L. Westphal, N. L. Baker, and E. J. Hyer, 2008: A system for operational aerosol optical depth data assimilation over global oceans. J. Geophys. Res., 113, D10208, doi:10.1029/2007JD009065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., M. Bocquet, V. Mallet, C. Seigneur, and A. Baklanov, 2012: Real-time air quality forecasting. Part I: History, techniques, and current status. Atmos. Environ., 60, 632655, doi:10.1016/j.atmosenv.2012.06.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1195 1195 309
PDF Downloads 1056 1056 284

The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation

View More View Less
  • 1 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • 2 Goddard Earth Sciences Technology and Research/Universities Space Research Association, Columbia, Maryland
  • 3 Atmospheric Chemistry and Dynamics Lab, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • 4 Science Systems and Applications, Inc., Lanham, Maryland
  • 5 NASA Biospheric Sciences Laboratory, Greenbelt, Maryland
  • 6 NASA Langley Research Center, Hampton, Virginia
  • 7 Bay Area Environmental Research Institute, Petaluma, California
  • 8 NASA Ames Research Center Cooperative for Research in Earth Science and Technology, Moffett Field, California
  • 9 Pacific Northwest National Laboratory, Richland, Washington
© Get Permissions
Restricted access

Abstract

The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), updates NASA’s previous satellite-era (1980 onward) reanalysis system to include additional observations and improvements to the Goddard Earth Observing System, version 5 (GEOS-5), Earth system model. As a major step toward a full Integrated Earth Systems Analysis (IESA), in addition to meteorological observations, MERRA-2 now includes assimilation of aerosol optical depth (AOD) from various ground- and space-based remote sensing platforms. Here, in the first of a pair of studies, the MERRA-2 aerosol assimilation is documented, including a description of the prognostic model (GEOS-5 coupled to the GOCART aerosol module), aerosol emissions, and the quality control of ingested observations. Initial validation and evaluation of the analyzed AOD fields are provided using independent observations from ground, aircraft, and shipborne instruments. The positive impact of the AOD assimilation on simulated aerosols is demonstrated by comparing MERRA-2 aerosol fields to an identical control simulation that does not include AOD assimilation. After showing the AOD evaluation, this paper takes a first look at aerosol–climate interactions by examining the shortwave, clear-sky aerosol direct radiative effect. The companion paper (Part II) evaluates and validates available MERRA-2 aerosol properties not directly impacted by the AOD assimilation (e.g., aerosol vertical distribution and absorption). Importantly, while highlighting the skill of the MERRA-2 aerosol assimilation products, both studies point out caveats that must be considered when using this new reanalysis product for future studies of aerosols and their interactions with weather and climate.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0609.s1.

Current affiliation: ExxonMobil Research and Engineering Company, Annandale, New Jersey.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: C. A. Randles, cynema@alum.mit.edu

This article is included in the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) special collection.

Abstract

The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), updates NASA’s previous satellite-era (1980 onward) reanalysis system to include additional observations and improvements to the Goddard Earth Observing System, version 5 (GEOS-5), Earth system model. As a major step toward a full Integrated Earth Systems Analysis (IESA), in addition to meteorological observations, MERRA-2 now includes assimilation of aerosol optical depth (AOD) from various ground- and space-based remote sensing platforms. Here, in the first of a pair of studies, the MERRA-2 aerosol assimilation is documented, including a description of the prognostic model (GEOS-5 coupled to the GOCART aerosol module), aerosol emissions, and the quality control of ingested observations. Initial validation and evaluation of the analyzed AOD fields are provided using independent observations from ground, aircraft, and shipborne instruments. The positive impact of the AOD assimilation on simulated aerosols is demonstrated by comparing MERRA-2 aerosol fields to an identical control simulation that does not include AOD assimilation. After showing the AOD evaluation, this paper takes a first look at aerosol–climate interactions by examining the shortwave, clear-sky aerosol direct radiative effect. The companion paper (Part II) evaluates and validates available MERRA-2 aerosol properties not directly impacted by the AOD assimilation (e.g., aerosol vertical distribution and absorption). Importantly, while highlighting the skill of the MERRA-2 aerosol assimilation products, both studies point out caveats that must be considered when using this new reanalysis product for future studies of aerosols and their interactions with weather and climate.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0609.s1.

Current affiliation: ExxonMobil Research and Engineering Company, Annandale, New Jersey.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: C. A. Randles, cynema@alum.mit.edu

This article is included in the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) special collection.

Supplementary Materials

    • Supplemental Materials (PDF 21.66 MB)
Save