• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., and J. Scott, 2002: The influence of ENSO on air–sea interaction in the Atlantic. Geophys. Res. Lett., 29, 1701, doi:10.1029/2001GL014347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, doi:10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barreiro, M., P. Chang, L. Ji, R. Saravanan, and A. Giannini, 2005: Dynamical elements of predicting boreal spring tropical Atlantic sea-surface temperatures. Dyn. Atmos. Oceans, 39, 6185, doi:10.1016/j.dynatmoce.2004.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, doi:10.1175/BAMS-D-13-00117.1.

  • Chang, P., L. Ji, and R. Saravanan, 2001: A hybrid coupled model study of tropical Atlantic variability. J. Climate, 14, 361390, doi:10.1175/1520-0442(2001)013<0361:AHCMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P., Y. Fang, R. Saravanan, L. Ji, and H. Seidel, 2006: The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 443, 324328, doi:10.1038/nature05053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 26162631, doi:10.1175/1520-0442(2002)015<2616:TTTVCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and B. R. Lintner, 2005: Mechanisms of remote tropical surface warming during El Niño. J. Climate, 18, 41304149, doi:10.1175/JCLI3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., Y. Kushnir, and A. Giannini, 2002: Deconstructing Atlantic intertropical convergence zone variability: Influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J. Geophys. Res., 107, doi:10.1029/2000JD000307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., P. van der Vaart, and J. Marshall, 2002: A diagnostic study of the role of remote forcing in tropical Atlantic variability. J. Climate, 15, 32803290, doi:10.1175/1520-0442(2002)015<3280:ADSOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, doi:10.1146/annurev-marine-120408-151453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeWeaver, E., and S. Nigam, 2002: Linearity in ENSO’s atmospheric response. J. Climate, 15, 24462461, doi:10.1175/1520-0442(2002)015<2446:LIESAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeWeaver, E., and S. Nigam, 2004: On the forcing of ENSO teleconnections by anomalous heating and cooling. J. Climate, 17, 32253235, doi:10.1175/1520-0442(2004)017<3225:OTFOET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., A. Voldoire, and O. Geoffroy, 2015: The recent global warming hiatus: What is the role of Pacific variability? Geophys. Res. Lett., 42, 880888, doi:10.1002/2014GL062775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J. Geophys. Res., 102, 929945, doi:10.1029/96JC03296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., Y. Kushnir, and M. A. Cane, 2000: Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Climate, 13, 297311, doi:10.1175/1520-0442(2000)013<0297:IVOCRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., J. C. H. Chiang, M. A. Cane, Y. Kushnir, and R. Seager, 2001: The ENSO teleconnection to the tropical Atlantic Ocean: Contributions of the remote and local SSTs to rainfall variability in the tropical Americas. J. Climate, 14, 45304544, doi:10.1175/1520-0442(2001)014<4530:TETTTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2004: The preconditioning role of tropical Atlantic variability in the development of the ENSO teleconnection: Implications for the prediction of Nordeste rainfall. Climate Dyn., 22, 839855, doi:10.1007/s00382-004-0420-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Handoh, I. C., A. J. Matthews, G. R. Bigg, and D. P. Stevens, 2006: Interannual variability of the tropical Atlantic independent of and associated with ENSO: Part I. The north tropical Atlantic. Int. J. Climatol., 26, 19371956, doi:10.1002/joc.1343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., P. S. Schopf, and Z. Pan, 2002: The ENSO effect on the tropical Atlantic variability: A regionally coupled model study. Geophys. Res. Lett., 29, 2039, doi:10.1029/2002GL014872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jang, Y., and D. M. Straus, 2013: Tropical stationary wave response to ENSO: Diabatic heating influence on the Indian summer monsoon. J. Atmos. Sci., 70, 193222, doi:10.1175/JAS-D-12-036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, doi:10.1175/BAMS-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, doi:10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., A. Bracco, J. H. Yoo, and F. Molteni, 2007: Low-frequency variability of the Indian monsoon–ENSO relationship and the tropical Atlantic: The “weakening” of the 1980s and 1990s. J. Climate, 20, 42554266, doi:10.1175/JCLI4254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., A. Bracco, J. H. Yoo, and F. Molteni, 2008: Atlantic forced component of the Indian monsoon interannual variability. Geophys. Res. Lett., 35, L04706, doi:10.1029/2007GL033037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., A. Bracco, J. H. Yoo, A. M. Tompkins, L. Feudale, P. Ruti, and A. Dell’Aquila, 2009: A Gill–Matsuno-type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfall. Quart. J. Roy. Meteor. Soc., 135, 569579, doi:10.1002/qj.406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and P. H. Chan, 1983: Short-term climate variability and atmospheric teleconnections from satellite-observed outgoing longwave radiation. Part I: Simultaneous relationships. J. Atmos. Sci., 40, 27352750, doi:10.1175/1520-0469(1983)040<2735:STCVAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., D. B. Enfield, and C. Wang, 2008: Why do some El Niños have no impact on tropical North Atlantic SST? Geophys. Res. Lett., 35, L16705, doi:10.1029/2008GL034734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., C. Wang, and B. E. Mapes, 2009: A simple atmospheric model of the local and teleconnection responses to tropical heating anomalies. J. Climate, 22, 272284, doi:10.1175/2008JCLI2303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., J. Derome, and G. Brunet, 2007: A hybrid coupled model study of tropical Atlantic variability. J. Climate, 20, 56425665, doi:10.1175/2007JCLI1383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., and J. C. H. Chiang, 2007: Adjustment of the remote tropical climate to El Niño conditions. J. Climate, 20, 25442557, doi:10.1175/JCLI4138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariotti, A., N. Zeng, and K.-M. Lau, 2002: Euro-Mediterranean rainfall and ENSO—A seasonally varying relationship. Geophys. Res. Lett., 29, doi:10.1029/2001GL014248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, doi:10.2151/jmsj1965.44.1_25.

  • Nigam, S., C. Chung, and E. DeWeaver, 2000: ENSO diabatic heating in ECMWF and NCEP–NCAR reanalyses, and NCAR CCM3 simulation. J. Climate, 13, 31523171, doi:10.1175/1520-0442(2000)013<3152:EDHIEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saravanan, R., and P. Chang, 2000: Interaction between tropical Atlantic variability and El Niño–Southern Oscillation. J. Climate, 13, 21772194, doi:10.1175/1520-0442(2000)013<2177:IBTAVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, doi:10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, W., T. Doi, K. J. Richards, and Y. Masumoto, 2015: The influence of ENSO on the equatorial Atlantic precipitation through the Walker circulation in a CGCM. Climate Dyn., 44, 191202, doi:10.1007/s00382-014-2133-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and L. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, H., J. M. Slingo, and M. K. Davey, 2004: Seasonal predictability of ENSO teleconnections: The role of the remote ocean response. Climate Dyn., 22, 511526, doi:10.1007/s00382-004-0393-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sterl, A., G. J. van Oldenborgh, W. Hazeleger, and G. Burgers, 2007: On the robustness of ENSO teleconnections. Climate Dyn., 29, 469485, doi:10.1007/s00382-007-0251-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., F. Molteni, and L. Ferranti, 2015: Atmospheric initial conditions and the predictability of the Arctic Oscillation. Geophys. Res. Lett., 42, 11731179, doi:10.1002/2014GL062681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., S. P. Jewson, and D. P. Rowell, 2000: The elements of climate variability in the tropical Atlantic region. J. Climate, 13, 32613284, doi:10.1175/1520-0442(2000)013<3261:TEOCVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., and A. A. Scaife, 2006: The influence of ENSO on winter North Atlantic climate. Geophys. Res. Lett., 33, L24704, doi:10.1029/2006GL027881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., G. Burgers, and A. K. Tank, 2000: On the El Niño teleconnection to spring precipitation in Europe. Int. J. Climatol., 20, 565574, doi:10.1002/(SICI)1097-0088(200004)20:5<565::AID-JOC488>3.0.CO;2-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2005: ENSO, Atlantic climate variability and the Walker and Hadley circulations. The Hadley Circulation: Present, Past and Future, H. F. Diaz and R. S. Bradley, Eds., Cambridge University Press, 173–202.

    • Crossref
    • Export Citation
  • Yang, X., and T. DelSole, 2012: Systematic comparison of ENSO teleconnection patterns between models and observations. J. Climate, 25, 425446, doi:10.1175/JCLI-D-11-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., and J. M. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the Microwave Sounding Unit. J. Climate, 7, 17191736, doi:10.1175/1520-0442(1994)007<1719:TSOEIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 163 163 39
PDF Downloads 147 147 36

Revisiting the ENSO Teleconnection to the Tropical North Atlantic

View More View Less
  • 1 Barcelona Supercomputing Center, Barcelona, Spain
  • 2 CERFACS/CNRS, Toulouse, France
  • 3 CNRM-GMGEC, Météo-France, Toulouse, France
  • 4 International Research Institute for Climate and Society, Columbia University, Palisades, New York
  • 5 Barcelona Supercomputing Center, and Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
© Get Permissions
Restricted access

Abstract

One of the most robust remote impacts of El Niño–Southern Oscillation (ENSO) is the teleconnection to tropical North Atlantic (TNA) sea surface temperature (SST) in boreal spring. However, important questions still remain open. In particular, the timing of the ENSO–TNA relationship lacks understanding. The three previously proposed mechanisms rely on teleconnection dynamics involving a time lag of one season with respect to the ENSO mature phase in winter, but recent results have shown that the persistence of ENSO into spring is necessary for the development of the TNA SST anomalies. Likewise, the identification of the effective atmospheric forcing in the deep TNA to drive the regional air–sea interaction is also lacking. In this manuscript a new dynamical framework to understand the ENSO–TNA teleconnection is proposed, in which a continuous atmospheric forcing is present throughout the ENSO decaying phase. Observational datasets in the satellite era, which include reliable estimates over the ocean, are used to illustrate the mechanism at play. The dynamics rely on the remote Gill-type response to the ENSO zonally compensated heat source over the Amazon basin, associated with perturbations in the Walker circulation. For El Niño conditions, the anomalous diabatic heating in the tropical Pacific is compensated by anomalous diabatic cooling, in association with negative rainfall anomalies and descending motion over northern South America. A pair of anomalous cyclonic circulations is established at upper-tropospheric levels in the tropical Atlantic straddling the equator, displaying a characteristic baroclinic structure with height. In the TNA region, the mirrored anomalous anticyclonic circulation at lower-tropospheric levels weakens the northeasterly trade winds, leading to a reduction in evaporation and of the ocean mixed layer depth, hence to positive SST anomalies. Apart from the dominance of latent heat flux anomalies in the remote response, sensible heat flux and shortwave radiation anomalies also appear to contribute. The “lagged” relationship between mature ENSO in winter and peaking TNA SSTs in spring seems to be phase locked with the seasonal cycle in both the location of the mechanism’s centers of action and regional SST variance.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0641.s1.

Corresponding author: Javier García-Serrano, javier.garcia@bsc.es

Abstract

One of the most robust remote impacts of El Niño–Southern Oscillation (ENSO) is the teleconnection to tropical North Atlantic (TNA) sea surface temperature (SST) in boreal spring. However, important questions still remain open. In particular, the timing of the ENSO–TNA relationship lacks understanding. The three previously proposed mechanisms rely on teleconnection dynamics involving a time lag of one season with respect to the ENSO mature phase in winter, but recent results have shown that the persistence of ENSO into spring is necessary for the development of the TNA SST anomalies. Likewise, the identification of the effective atmospheric forcing in the deep TNA to drive the regional air–sea interaction is also lacking. In this manuscript a new dynamical framework to understand the ENSO–TNA teleconnection is proposed, in which a continuous atmospheric forcing is present throughout the ENSO decaying phase. Observational datasets in the satellite era, which include reliable estimates over the ocean, are used to illustrate the mechanism at play. The dynamics rely on the remote Gill-type response to the ENSO zonally compensated heat source over the Amazon basin, associated with perturbations in the Walker circulation. For El Niño conditions, the anomalous diabatic heating in the tropical Pacific is compensated by anomalous diabatic cooling, in association with negative rainfall anomalies and descending motion over northern South America. A pair of anomalous cyclonic circulations is established at upper-tropospheric levels in the tropical Atlantic straddling the equator, displaying a characteristic baroclinic structure with height. In the TNA region, the mirrored anomalous anticyclonic circulation at lower-tropospheric levels weakens the northeasterly trade winds, leading to a reduction in evaporation and of the ocean mixed layer depth, hence to positive SST anomalies. Apart from the dominance of latent heat flux anomalies in the remote response, sensible heat flux and shortwave radiation anomalies also appear to contribute. The “lagged” relationship between mature ENSO in winter and peaking TNA SSTs in spring seems to be phase locked with the seasonal cycle in both the location of the mechanism’s centers of action and regional SST variance.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0641.s1.

Corresponding author: Javier García-Serrano, javier.garcia@bsc.es

Supplementary Materials

    • Supplemental Materials (DOC 9.35 MB)
Save