• Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, D., K. I. Hodges, and B. J. Hoskins, 2003: Sensitivity of feature-based analysis methods of storm tracks to the form of background field removal. Mon. Wea. Rev., 131, 565573, doi:10.1175/1520-0493(2003)131<0565:SOFBAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bader, J., M. D. Mesquita, K. I. Hodges, N. Keenlyside, S. Østerhus, and M. Miles, 2011: A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: Observations and projected changes. Atmos. Res., 101, 809834, doi:10.1016/j.atmosres.2011.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, M., and A. D. Del Genio, 2006: Composite analysis of winter cyclones in a GCM: Influence on climatological humidity. J. Climate, 19, 16521672, doi:10.1175/JCLI3690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beersma, J., K. Rider, G. Komen, E. Kaas, and V. Kharin, 1997: An analysis of extra‐tropical storms in the North Atlantic region as simulated in a control and 2×CO2 time‐slice experiment with a high-resolution atmospheric model. Tellus, 49A, 347361, doi:10.3402/tellusa.v49i3.14674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543, doi:10.1175/JCLI3815.1.

  • Bengtsson, L., K. I. Hodges, and N. Keenlyside, 2009: Will extratropical storms intensify in a warmer climate? J. Climate, 22, 22762301, doi:10.1175/2008JCLI2678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 16071623, doi:10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blender, R., K. Fraedrich, and F. Lunkeit, 1997: Identification of cyclone‐track regimes in the North Atlantic. Quart. J. Roy. Meteor. Soc., 123, 727741, doi:10.1002/qj.49712353910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., L. Thompson, J. Patoux, and K. A. Kelly, 2012: Sensitivity of midlatitude storm intensification to perturbations in the sea surface temperature near the Gulf Stream. Mon. Wea. Rev., 140, 12411256, doi:10.1175/MWR-D-11-00195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., S. Wang, and L. Polvani, 2013: Midlatitude storms in a moister world: lessons from idealized baroclinic life cycle experiments. Climate Dyn., 41, 787802, doi:10.1007/s00382-012-1472-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2011: The basic ingredients of the North Atlantic storm track. Part II: Sea surface temperatures. J. Atmos. Sci., 68, 17841805, doi:10.1175/2011JAS3674.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brennan, M. J., G. M. Lackmann, and K. M. Mahoney, 2008: Potential vorticity (PV) thinking in operations: The utility of nonconservation. Wea. Forecasting, 23, 168182, doi:10.1175/2007WAF2006044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: Baroclinic instability and the short wavelength cut-off in terms of potential vorticity. Quart. J. Roy. Meteor. Soc., 92, 335345, doi:10.1002/qj.49709239303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewer, M. C., and C. F. Mass, 2016: Projected changes in western U.S. large-scale summer synoptic circulations and variability in CMIP5 models. J. Climate, 29, 59655978, doi:10.1175/JCLI-D-15-0598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carnell, R., and C. Senior, 1998: Changes in mid-latitude variability due to increasing greenhouse gases and sulphate aerosols. Climate Dyn., 14, 369383, doi:10.1007/s003820050229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carnell, R., C. Senior, and J. Mitchell, 1996: An assessment of measures of storminess: Simulated changes in Northern Hemisphere winter due to increasing CO2. Climate Dyn., 12, 467474, doi:10.1007/s003820050121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., L. C. Shaffrey, and K. I. Hodges, 2011: Northern Hemisphere extratropical cyclones in a warming climate in the HiGEM high-resolution climate model. J. Climate, 24, 53365352, doi:10.1175/2011JCLI4181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Champion, A. J., K. I. Hodges, L. O. Bengtsson, N. S. Keenlyside, and M. Esch, 2011: Impact of increasing resolution and a warmer climate on extreme weather from Northern Hemisphere extratropical cyclones. Tellus, 63A, 893906, doi:10.1111/j.1600-0870.2011.00538.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K., 2013: CMIP5 projection of significant reduction in extratropical cyclone activity over North America. J. Climate, 26, 99039922, doi:10.1175/JCLI-D-13-00209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K., 2014: Impacts of background field removal on CMIP5 projected changes in Pacific winter cyclone activity. J. Geophys. Res. Atmos., 119, 46264639, doi:10.1002/2013JD020746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, doi:10.1029/2012JD018578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cipullo, M. L., 2013: High-resolution modeling studies of the changing risks of damage from extratropical cyclones. M.S. thesis, Dept. of Marine, Earth, and Atmospheric Sciences, North Carolina State University, 93 pp.

  • Colle, B. A., Z. Zhang, K. A. Lombardo, E. Chang, P. Liu, and M. Zhang, 2013: Historical evaluation and future prediction of eastern North American and western Atlantic extratropical cyclones in the CMIP5 models during the cool season. J. Climate, 26, 68826903, doi:10.1175/JCLI-D-12-00498.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., and S. L. Gray, 2009: The spatial distribution and evolution characteristics of North Atlantic cyclones. Mon. Wea. Rev., 137, 99115, doi:10.1175/2008MWR2491.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, doi:10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Della‐Marta, P. M., and J. G. Pinto, 2009: Statistical uncertainty of changes in winter storms over the North Atlantic and Europe in an ensemble of transient climate simulations. Geophys. Res. Lett., 36, L14703, doi:10.1029/2009GL038557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichler, T. P., N. Gaggini, and Z. Pan, 2013: Impacts of global warming on Northern Hemisphere winter storm tracks in the CMIP5 model suite. J. Geophys. Res. Atmos., 118, 39193932, doi:10.1002/jgrd.50286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and K. E. Trenberth, 2008: The annual cycle of the energy budget. Part II: Meridional structures and poleward transports. J. Climate, 21, 23132325, doi:10.1175/2007JCLI1936.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feser, F., M. Barcikowska, O. Krueger, F. Schenk, R. Weisse, and L. Xia, 2015: Storminess over the North Atlantic and northwestern Europe—A review. Quart. J. Roy. Meteor. Soc., 141, 350382, doi:10.1002/qj.2364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20, 233254, doi:10.1175/JCLI3998.1.

  • Frei, C., C. Schär, D. Lüthi, and H. C. Davies, 1998: Heavy precipitation processes in a warmer climate. Geophys. Res. Lett., 25, 14311434, doi:10.1029/98GL51099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, Q., and M. Sugi, 2003: Possible change of extratropical cyclone activity due to enhanced greenhouse gases and sulfate aerosols—Study with a high-resolution AGCM. J. Climate, 16, 22622274, doi:10.1175/1520-0442(2003)16<2262:PCOECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hara, M., T. Yoshikane, H. Kawase, and F. Kimura, 2008: Estimation of the impact of global warming on snow depth in Japan by the pseudo-global-warming method. Hydrol. Res. Lett., 2, 6164, doi:10.3178/hrl.2.61.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, B., L. Shaffrey, T. Woollings, G. Zappa, and K. Hodges, 2012: How large are projected 21st century storm track changes? Geophys. Res. Lett., 39, L18707, doi:10.1029/2012GL052873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirata, H., R. Kawamura, M. Kato, and T. Shinoda, 2016: Response of rapidly developing extratropical cyclones to sea surface temperature variations over the western Kuroshio–Oyashio confluence region. J. Geophys. Res. Atmos., 121, 38433858, doi:10.1002/2015JD024391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K., 1994: A general-method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 25732586, doi:10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inatsu, M., H. Mukougawa, and S.-P. Xie, 2003: Atmospheric response to zonal variations in midlatitude SST: Transient and stationary eddies and their feedback. J. Climate, 16, 33143329, doi:10.1175/1520-0442(2003)016<3314:ARTZVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, P. M., 2006: An assessment of European synoptic variability in Hadley Centre Global Environmental models based on an objective classification of weather regimes. Climate Dyn., 27, 215231, doi:10.1007/s00382-006-0133-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawase, H., T. Yoshikane, M. Hara, F. Kimura, T. Yasunari, B. Ailikun, H. Ueda, and T. Inoue, 2009: Intermodel variability of future changes in the baiu rainband estimated by the pseudo global warming downscaling method. J. Geophys. Res., 114, D24110, doi:10.1029/2009JD011803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimura, F., and A. Kitoh, 2007: Downscaling by pseudo global warming method. Impact of climate changes on agricultural production system in arid areas, Research Institute for Humanity and Nature Final Rep., 43–46.

  • Knippertz, P., U. Ulbrich, and P. Speth, 2000: Changing cyclones and surface wind speeds over the North Atlantic and Europe in a transient GHG experiment. Climate Res., 15, 109122, doi:10.3354/cr015109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kocin, P. J., P. N. Schumacher, R. F. Morales Jr., and L. W. Uccellini, 1995: Overview of the 12–14 March 1993 superstorm. Bull. Amer. Meteor. Soc., 76, 165182, doi:10.1175/1520-0477(1995)076<0165:OOTMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • König, W., R. Sausen, and F. Sielmann, 1993: Objective identification of cyclones in GCM simulations. J. Climate, 6, 22172231, doi:10.1175/1520-0442(1993)006<2217:OIOCIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2011: Extratropical cyclones. Midlatitude Synoptic Meteorology: Dynamics, Analysis, and Forecasting, G. M. Lackmann, Ed., Amer. Meteor. Soc., 95–129.

    • Crossref
    • Export Citation
  • Lackmann, G. M., 2013: The south-central U.S. flood of May 2010: Present and future. J. Climate, 26, 46884709, doi:10.1175/JCLI-D-12-00392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, S. J., 1995: The effect of enhanced greenhouse warming on winter cyclone frequencies and strengths. J. Climate, 8, 14471452, doi:10.1175/1520-0442(1995)008<1447:TEOEGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, S. J., and J. C. Fyfe, 2006: Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: Results from the models participating in the IPCC diagnostic exercise. Climate Dyn., 26, 713728, doi:10.1007/s00382-006-0110-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liberato, M. L. R., J. G. Pinto, R. M. Trigo, P. Ludwig, P. Ordóñez, D. Yuen, and I. F. Trigo, 2013: Explosive development of winter storm Xynthia over the subtropical North Atlantic Ocean. Nat. Hazards Earth Syst. Sci., 13, 22392251, doi:10.5194/nhess-13-2239-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K., B. A. Colle, and Z. Zhang, 2015: Evaluation of historical and future cool season precipitation over the eastern United States and western Atlantic storm track using CMIP5 models. J. Climate, 28, 451467, doi:10.1175/JCLI-D-14-00343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallard, M. S., G. M. Lackmann, A. Aiyyer, and K. Hill, 2013: Atlantic hurricanes and climate change. Part I: Experimental design and isolation of thermodynamic effects. J. Climate, 26, 48764893, doi:10.1175/JCLI-D-12-00182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marciano, C. G., G. M. Lackmann, and W. A. Robinson, 2015: Changes in U.S. East Coast cyclone dynamics with climate change. J. Climate, 28, 468484, doi:10.1175/JCLI-D-14-00418.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, R. E., 2011: Understanding the impact of climate change on Northern Hemisphere extra-tropical cyclones. Climate Dyn., 37, 13991425, doi:10.1007/s00382-010-0916-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michaelis, A. C., 2015: Examining changes in North Atlantic extratropical cyclones with climate change. M.S. thesis, Dept. of Marine, Earth, and Atmospheric Sciences, North Carolina State University, 263 pp.

  • Mizuta, R., 2012: Intensification of extratropical cyclones associated with the polar jet change in the CMIP5 global warming projections. Geophys. Res. Lett., 39, L19707, doi:10.1029/2012GL053032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizuta, R., M. Matsueda, H. Endo, and S. Yukimoto, 2011: Future change in extratropical cyclones associated with change in the upper troposphere. J. Climate, 24, 64566470, doi:10.1175/2011JCLI3969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, R. J., and I. Simmonds, 1991: A numerical scheme for tracking cyclone centres from digital data. Part I: Development and operation of the scheme. Aust. Meteor. Mag., 39, 155166.

    • Search Google Scholar
    • Export Citation
  • NOAA/NCEP/NWS/U.S. Department of Commerce, 2000: NCEP FNL operational model global tropospheric analyses, continuing from July 1999. NCAR Research Data Archive, accessed 9 August 2012, doi:10.5065/D6M043C6.

    • Crossref
    • Export Citation
  • Oort, A. H., and T. H. Vonder Haar, 1976: On the observed annual cycle in the ocean–atmosphere heat balance over the Northern Hemisphere. J. Phys. Oceanogr., 6, 781800, doi:10.1175/1520-0485(1976)006<0781:OTOACI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perrie, W., Y. Yao, and W. Zhang, 2010: On the impacts of climate change and the upper ocean on midlatitude northwest Atlantic landfalling cyclones. J. Geophys. Res., 115, D23110, doi:10.1029/2009JD013535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., U. Ulbrich, G. Leckebusch, T. Spangehl, M. Reyers, and S. Zacharias, 2007: Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Climate Dyn., 29, 195210, doi:10.1007/s00382-007-0230-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., S. Zacharias, A. H. Fink, G. C. Leckebusch, and U. Ulbrich, 2009: Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Climate Dyn., 32, 711737, doi:10.1007/s00382-008-0396-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plant, R., G. C. Craig, and S. Gray, 2003: On a threefold classification of extratropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 129, 29893012, doi:10.1256/qj.02.174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raible, C., P. Della-Marta, C. Schwierz, H. Wernli, and R. Blender, 2008: Northern Hemisphere extratropical cyclones: A comparison of detection and tracking methods and different reanalyses. Mon. Wea. Rev., 136, 880897, doi:10.1175/2007MWR2143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, doi:10.1175/2010JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., M. T. Stoelinga, and Y.-H. Kuo, 1992: A model-aided study of the origin and evolution of the anomalously high potential vorticity in the inner region of a rapidly deepening marine cyclone. Mon. Wea. Rev., 120, 893913, doi:10.1175/1520-0493(1992)120<0893:AMASOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., G. Grell, and Y.-H. Kuo, 1993: The ERICA IOP 5 storm. Part II: Sensitivity tests and further diagnosis based on model output. Mon. Wea. Rev., 121, 15951612, doi:10.1175/1520-0493(1993)121<1595:TEISPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salathé, E. P., Jr., R. Steed, C. F. Mass, and P. H. Zahn, 2008: A high-resolution climate model for the U.S. Pacific Northwest: Mesoscale feedbacks and local responses to climate change. J. Climate, 21, 57085726, doi:10.1175/2008JCLI2090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., F. Kimura, and A. Kitoh, 2007: Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J. Hydrol., 333, 144154, doi:10.1016/j.jhydrol.2006.07.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., C. Frei, D. Lüthi, and H. C. Davies, 1996: Surrogate climate‐change scenarios for regional climate models. Geophys. Res. Lett., 23, 669672, doi:10.1029/96GL00265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, M., J. Perlwitz, R. Blender, K. Fraedrich, and F. Lunkeit, 1998: North Atlantic cyclones in CO2-induced warm climate simulations: Frequency, intensity, and tracks. Climate Dyn., 14, 827838, doi:10.1007/s003820050258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sickmöller, M., R. Blender, and K. Fraedrich, 2000: Observed winter cyclone tracks in the Northern Hemisphere in re‐analysed ECMWF data. Quart. J. Roy. Meteor. Soc., 126, 591620, doi:10.1002/qj.49712656311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., and I. G. Watterson, 1999: Objective assessment of extratropical weather systems in simulated climates. J. Climate, 12, 34673485, doi:10.1175/1520-0442(1999)012<3467:OAOEWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Teng, H., W. M. Washington, and G. A. Meehl, 2008: Interannual variations and future change of wintertime extratropical cyclone activity over North America in CCSM3. Climate Dyn., 30, 673686, doi:10.1007/s00382-007-0314-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thiébaux, J., E. Rogers, W. Wang, and B. Katz, 2003: A new high-resolution blended real time global sea surface temperature analysis. Bull. Amer. Meteor. Soc., 84, 645656, doi:10.1175/BAMS-84-5-645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42, 327339, doi:10.1023/A:1005488920935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., J. Pinto, H. Kupfer, G. Leckebusch, T. Spangehl, and M. Reyers, 2008: Changing Northern Hemisphere storm tracks in an ensemble of IPCC climate change simulations. J. Climate, 21, 16691679, doi:10.1175/2007JCLI1992.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., G. Leckebusch, and J. Pinto, 2009: Extra-tropical cyclones in the present and future climate: A review. Theor. Appl. Climatol., 96, 117131, doi:10.1007/s00704-008-0083-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507, doi:10.1175/JAS3766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willison, J., 2015: How will global warming change the storm tracks? Ph.D. dissertation, Dept. of Marine, Earth, and Atmospheric Sciences, North Carolina State University, 123 pp.

  • Willison, J., W. A. Robinson, and G. M. Lackmann, 2013: The importance of resolving mesoscale latent heating in the North Atlantic storm track. J. Atmos. Sci., 70, 22342250, doi:10.1175/JAS-D-12-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willison, J., W. A. Robinson, and G. M. Lackmann, 2015: North Atlantic storm-track sensitivity to warming increases with model resolution. J. Climate, 28, 45134524, doi:10.1175/JCLI-D-14-00715.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, G., L. C. Shaffrey, K. I. Hodges, P. G. Sansom, and D. B. Stephenson, 2013: A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. J. Climate, 26, 58465862, doi:10.1175/JCLI-D-12-00573.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and W. Wang, 1997: Model-simulated northern winter cyclone and anticyclone activity under a greenhouse warming scenario. J. Climate, 10, 16161634, doi:10.1175/1520-0442(1997)010<1616:MSNWCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., and W. B. Rossow, 1997: Estimating meridional energy transports by the atmospheric and oceanic general circulations using boundary fluxes. J. Climate, 10, 23582373, doi:10.1175/1520-0442(1997)010<2358:EMETBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 209 209 40
PDF Downloads 168 168 27

Changes in Winter North Atlantic Extratropical Cyclones in High-Resolution Regional Pseudo–Global Warming Simulations

View More View Less
  • 1 Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina
© Get Permissions
Restricted access

Abstract

The present study investigates changes in the location, frequency, intensity, and dynamical processes of North Atlantic extratropical cyclones with warming consistent with the IPCC Fifth Assessment Report (AR5) representative concentration pathway 8.5 (RCP8.5) scenario. The modeling, analysis, and prediction (MAP) climatology of midlatitude storminess (MCMS) feature-tracking algorithm was utilized to analyze 10 cold-season high-resolution atmospheric simulations over the North Atlantic region in current and future climates. Enhanced extratropical cyclone activity is most evident in the northeast North Atlantic and off the U.S. East Coast. These changes in cyclone activity are offset from changes in eddy kinetic energy and eddy heat flux. Investigation of the minimum SLP reached at each grid point reveals a lack of correspondence between the strongest events in the current and future simulations, indicating the future simulations produced a different population of storms. Examination of the percent change of storms in the storm-track region shows a reduction in the number of strong storms (i.e., those reaching a minimum SLP perturbation of at least −51 hPa). Storm-relative composites of strong and moderate storms show an increase in precipitation, associated with enhanced latent heat release and strengthening of the 900–700-hPa layer-average potential vorticity (PV). Other structural changes found for cyclones in a future climate include weakened upper-level PV for strong storms and a weakened near-surface potential temperature anomaly for moderate storms, demonstrating a change in storm dynamics. Furthermore, the impacts associated with extratropical cyclones, such as strong near-surface winds and heavy precipitation, strengthen and become more frequent with warming.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Allison C. Michaelis, acamras@ncsu.edu

Abstract

The present study investigates changes in the location, frequency, intensity, and dynamical processes of North Atlantic extratropical cyclones with warming consistent with the IPCC Fifth Assessment Report (AR5) representative concentration pathway 8.5 (RCP8.5) scenario. The modeling, analysis, and prediction (MAP) climatology of midlatitude storminess (MCMS) feature-tracking algorithm was utilized to analyze 10 cold-season high-resolution atmospheric simulations over the North Atlantic region in current and future climates. Enhanced extratropical cyclone activity is most evident in the northeast North Atlantic and off the U.S. East Coast. These changes in cyclone activity are offset from changes in eddy kinetic energy and eddy heat flux. Investigation of the minimum SLP reached at each grid point reveals a lack of correspondence between the strongest events in the current and future simulations, indicating the future simulations produced a different population of storms. Examination of the percent change of storms in the storm-track region shows a reduction in the number of strong storms (i.e., those reaching a minimum SLP perturbation of at least −51 hPa). Storm-relative composites of strong and moderate storms show an increase in precipitation, associated with enhanced latent heat release and strengthening of the 900–700-hPa layer-average potential vorticity (PV). Other structural changes found for cyclones in a future climate include weakened upper-level PV for strong storms and a weakened near-surface potential temperature anomaly for moderate storms, demonstrating a change in storm dynamics. Furthermore, the impacts associated with extratropical cyclones, such as strong near-surface winds and heavy precipitation, strengthen and become more frequent with warming.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Allison C. Michaelis, acamras@ncsu.edu
Save