• Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, doi:10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bullock, B. R., and D. R. Johnson, 1971: The generation of available potential energy by latent heat release in a mid-latitude cyclone. Mon. Wea. Rev., 99, 114, doi:10.1175/1520-0493(1971)099<0001:TGOAPE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R. Q., K.-J. Ha, and J. P. Li, 2010: Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean. Climate Dyn., 34, 10591071, doi:10.1007/s00382-009-0555-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, D., J. P. Li, L. D. Huyan, and J. Q. Xue, 2017: Atmospheric energetics over the tropical Pacific during the ENSO cycle. J. Climate, 30, 36353654, doi:10.1175/JCLI-D-16-0480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., J. P. Li, and Y. Li, 2010: A monsoon-like southwest Australian circulation and its relation with rainfall in southwest Western Australia. J. Climate, 23, 13341353, doi:10.1175/2009JCLI2837.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, L., and J. P. Li, 2007: Progress in the study of atmospheric energy efficiency (in Chinese). Adv. Earth Sci., 22, 486494.

  • Gao, L., and J. P. Li, 2012: Relationship and mechanism between perturbation potential energy and atmospheric general circulation anomalies. Chin. J. Geophys., 55, 359374, doi:10.1002/cjg2.1730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, L., and J. P. Li, 2013: Impacts and mechanism of diabatic heating on atmospheric perturbation potential energy (in Chinese). Chin. J. Geophys., 56, 32553269.

    • Search Google Scholar
    • Export Citation
  • Gao, L., J. P. Li, and H. L. Ren, 2006: Some characteristics of the atmosphere during an adiabatic process (in Chinese). Prog. Nat. Sci., 16, 243247.

    • Search Google Scholar
    • Export Citation
  • Gu, X. Z., 1990: A theoretical study of the available potential energy in a limited atmospheric region (in Chinese). Acta Meteor. Sin., 48, 248252.

    • Search Google Scholar
    • Export Citation
  • Guan, Z. Y., 2000: The variations of Asian monsoon as revealed by the variations of kinetic energy of barotropic/baroclinic modes of the wind field (in Chinese). J. Nanjing Inst. Meteor., 23, 313322.

    • Search Google Scholar
    • Export Citation
  • Guo, Q. Y., and J. Q. Wang, 1986: The snow cover on Tibet Plateau and its effect on the monsoon over East Asia (in Chinese). Plateau Meteor., 5, 116124.

    • Search Google Scholar
    • Export Citation
  • Ha, K.-J., K.-S. Yun, J.-G. Jhun, and J. P. Li, 2009: Circulation changes associated with the interdecadal shift of Korean August rainfall around late 1960s. J. Geophys. Res., 114, D04115, doi:10.1029/2008JD011287.

    • Search Google Scholar
    • Export Citation
  • He, J. H., J. J. Yu, X. Y. Shen, and H. Gao, 2004: Research on mechanism and variability of East Asian monsoon (in Chinese). J. Trop. Meteor., 20, 449459.

    • Search Google Scholar
    • Export Citation
  • He, J. H., M. Wen, Y. H. Ding, and R. H. Zhang, 2006: Possible mechanism for the impact of convection over Asia–Australian “land bridge” on the establishment of East Asian summer monsoon (in Chinese). Sci. China Earth Sci., 36, 959967.

    • Search Google Scholar
    • Export Citation
  • Huang, B. Y., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4): Part I. Upgrades and intercomparisons. J. Climate, 28, 911930, doi:10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B. Y., and Coauthors, 2016: Further exploring and quantifying uncertainties for Extended Reconstructed Sea Surface Temperature (ERSST) version 4 (v4). J. Climate, 29, 31193142, doi:10.1175/JCLI-D-15-0430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G., K. M. Hu, X. Qu, W. C. Tao, S. L. Yao, G. J. Zhao, and W. P. Jiang, 2016: A review about Indian Ocean basin mode and its impacts on East Asian summer climate (in Chinese). Chin. J. Atmos. Sci., 40, 121130.

    • Search Google Scholar
    • Export Citation
  • Huang, R. H., G. Huang, and B. H. Ren, 1999: Advances and problems needed for further investigation in the studies of the East Asian summer monsoon (in Chinese). Chin. J. Atmos. Sci., 23, 129141.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., 1970: The available potential energy of storms. J. Atmos. Sci., 27, 727741, doi:10.1175/1520-0469(1970)027<0727:TAPEOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., and Coauthors, 2002: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Climate Dyn., 19, 383395, doi:10.1007/s00382-002-0245-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13, 42874309, doi:10.1175/1520-0442(2000)013<4287:IOEOTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C. Y., and M. Q. Mu, 1998: Numerical simulations of anomalous winter monsoon in East Asia exciting ENSO (in Chinese). Chin. J. Atmos. Sci., 22, 481490.

    • Search Google Scholar
    • Export Citation
  • Li, C. Y., J.-T. Wang, S.-Z. Lin, and H.-R. Cho, 2004: The relationship between East Asian summer monsoon activity and northward jump of the upper westerly jet location (in Chinese). Chin. J. Atmos. Sci., 28, 641658.

    • Search Google Scholar
    • Export Citation
  • Li, J. P., and Q. C. Zeng, 2000: Significance of the normalized seasonality of wind field and its rationality for characterizing the monsoon. Sci. China, 43D, 646653, doi:10.1007/BF02879509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. P., and Q. C. Zeng, 2002: A unified monsoon index. Geophys. Res. Lett., 29, 1274, doi:10.1029/2001GL013874.

  • Li, J. P., and Q. C. Zeng, 2003: A new monsoon index and the geographical distribution of the global monsoons. Adv. Atmos. Sci., 20, 299302, doi:10.1007/s00376-003-0016-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. P., and Q. C. Zeng, 2005: A new monsoon index, its interannual variability and relation with monsoon precipitation (in Chinese). Climatic Environ. Res., 10, 351365.

    • Search Google Scholar
    • Export Citation
  • Li, J. P., and L. Gao, 2006: Theory on perturbation potential energy and its applications—Concept, expression and spatio-temporal structures of perturbation potential energy (in Chinese). Chin. J. Atmos. Sci., 30, 834838.

    • Search Google Scholar
    • Export Citation
  • Li, J. P., Z. W. Wu, Z. H. Jiang, and J. H. He, 2010: Can global warming strengthen the East Asian summer monsoon? J. Climate, 23, 66966705, doi:10.1175/2010JCLI3434.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. P., G. X. Wu, and D. X. Hu, 2011a: Ocean–Atmosphere Interaction over the Joining Area of Asia and Indian–Pacific Ocean and Its Impact on the Short-Term Climate Variation in China (in Chinese). Vol. 1. China Meteorological Press, 516 pp.

  • Li, J. P., G. X. Wu, and D. X. Hu, 2011b: Ocean–Atmosphere Interaction over the Joining Area of Asia and Indian–Pacific Ocean and Its Impact on the Short-Term Climate Variation in China (in Chinese). Vol. 2. China Meteorological Press, 565 pp.

  • Li, J. P., and Coauthors, 2013: Progress in air–land–sea interactions in Asia and their role in global and Asian climate change (in Chinese). Chin. J. Atmos. Sci., 37, 518538.

    • Search Google Scholar
    • Export Citation
  • Li, J. P., S. Zhao, Y. J. Li, L. Wang, and C. Sun, 2016: On the role of perturbation potential energy in variability of the East Asian summer monsoon: Current status and prospects (in Chinese). Adv. Earth Sci., 31, 115125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, J. Y., and S. S. Wu, 2003: The study on the mechanism of SSTA in the Pacific Ocean affecting the onset of summer monsoon in the South China Sea—Numerical experiments (in Chinese). Acta Oceanol. Sin., 25, 2841.

    • Search Google Scholar
    • Export Citation
  • Liu, W., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4): Part II. Parametric and structural uncertainty estimations. J. Climate, 28, 931951, doi:10.1175/JCLI-D-14-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, doi:10.3402/tellusa.v7i2.8796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Margules, M., 1903: Über die Energie der Stürme. Jahrb. Zentralanstalt Meteor. Geodyn., 40, 126.

  • Nan, S. L., and J. P. Li, 2005: The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annular mode: II. The role of the Indian Ocean and South China Sea as an “oceanic bridge” (in Chinese). Acta Meteor. Sin., 63, 849856.

    • Search Google Scholar
    • Export Citation
  • Oh, H., and K.-J. Ha, 2015: Thermodynamic characteristics and responses to ENSO of dominant intraseasonal modes in the East Asian summer monsoon. Climate Dyn., 44, 17511766, doi:10.1007/s00382-014-2268-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, H., and K.-J. Ha, 2016: Predictability of the dominant intraseasonal modes in the East Asia–western North Pacific summer monsoon region. Climate Dyn., 47, 20252037, doi:10.1007/s00382-015-2948-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Qian, W. H., 2005: Review of variations of the summer monsoon from seasonal to interannual and interdecadal scales (in Chinese). J. Trop. Meteor., 20, 13711386.

    • Search Google Scholar
    • Export Citation
  • Song, F. F., and T. J. Zhou, 2014: Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean–western Pacific anticyclone teleconnection. J. Climate, 27, 16791697, doi:10.1175/JCLI-D-13-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, S. Y., and L. T. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang, and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.

  • van Mieghem, J., 1973: Atmospheric Energetics. Clarendon Press, 306 pp.

  • Wallace, J. M., C. Smith, and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5, 561576, doi:10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., LinHo, Y. S. Zhang, and M.-M. Lu, 2004: Definition of South China Sea monsoon onset and commencement of the East Asian summer monsoon. J. Climate, 17, 699710, doi:10.1175/2932.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. H. Ding, X. H. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, doi:10.1029/2005GL022734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Z. W. Wu, J. P. Li, J. Lin, C.-P. Chang, Y. H. Ding, and G. X. Wu, 2008a: How to measure the strength of the East Asian summer monsoon? J. Climate, 21, 44494463, doi:10.1175/2008JCLI2183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Yang, T. J. Zhou, and B. Wang, 2008b: Interdecadal changes in the major modes of Asian–Australian monsoon variability: Strengthening relationship with ENSO since the late 1970s. J. Climate, 21, 17711789, doi:10.1175/2007JCLI1981.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., J. P. Li, and Y. Guo, 2012: Governing equations of atmospheric layer perturbation potential energy and its applications—Energy budget of the South China Sea summer monsoon activity (in Chinese). Chin. J. Atmos. Sci., 36, 769783.

    • Search Google Scholar
    • Export Citation
  • Wang, L., J. P. Li, and R. Q. Ding, 2013: Theory on layer perturbation potential energy and its application: A case study on annual variation of the South China Sea summer monsoon (in Chinese). Chin. J. Geophys., 56, 392408.

    • Search Google Scholar
    • Export Citation
  • Wang, L., J. P. Li, Z. G. Wang, Y. J. Li, and F. Zheng, 2015: The oscillation of the perturbation potential energy between the extratropics and tropics in boreal winter. Atmos. Sci. Lett., 16, 119126, doi:10.1002/asl2.532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G. X., J. Y. Mao, A. M. Duan, and Q. Zhang, 2004: Recent progress in the study of the impacts of Tibetan Plateau on Asian summer climate (in Chinese). Acta Meteor. Sin., 62, 528540.

    • Search Google Scholar
    • Export Citation
  • Wu, G. X., Y. M. Liu, X. Liu, A. M. Duan, and X. Y. Liang, 2005: How the heating over the Tibetan Plateau affects the Asian climate in summer (in Chinese). Chin. J. Atmos. Sci., 29, 4756.

    • Search Google Scholar
    • Export Citation
  • Xing, W., B. Wang, and S.-Y. Yim, 2016: Peak-summer East Asian rainfall predictability and prediction part I: Southeast Asia. Climate Dyn., 47, 113, doi:10.1007/s00382-014-2385-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X. Q., Q. Xie, Y. M. Zhu, X. G. Sun, and Y. J. Guo, 2005: Decadal-to-interdecadal variability of precipitation in North China and associated atmospheric and oceanic anomaly patterns (in Chinese). Chin. J. Geophys., 48, 789797.

    • Search Google Scholar
    • Export Citation
  • Yim, S.-Y., B. Wang, W. Xing, and M.-M. Lu, 2015: Prediction of Meiyu rainfall in Taiwan by multi-lead physical–empirical models. Climate Dyn., 44, 30333042, doi:10.1007/s00382-014-2340-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yun, K.-S., K.-J. Ha, and B. Wang, 2010: Impacts of tropical ocean warming on East Asian summer climate. Geophys. Res. Lett., 37, L20809, doi:10.1029/2010GL044931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q. Y., and S. Y. Tao, 1998: Tropical and subtropical monsoon over East Asia and its influence on the rainfall over eastern China in summer (in Chinese). Quart. J. Appl. Meteor., 9, 1723.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q. Y., S. Y. Tao, and L. T. Chen, 2003: The inter-annual variability of East Asian summer monsoon indices and its association with the pattern of general circulation over East Asia (in Chinese). Acta Meteor. Sin., 61, 559568.

    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., and Q. Li, 2004: Impact of sea temperature variability of tropical oceans on East Asian monsoon (in Chinese). Meteor. Mon., 30, 2226.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y. F., and J. Zhu, 2015: Assessing quality of grid daily precipitation datasets in China in recent 50 years (in Chinese). Plateau Meteor., 34, 5058.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y. F., J. Zhu, and Y. Xu, 2014: Establishment and assessment of the grid precipitation datasets in China for recent 50 years (in Chinese). J. Meteor. Sci., 34, 414420.

    • Search Google Scholar
    • Export Citation
  • Zheng, J. Y., J. P. Li, and J. Feng, 2014: A dipole pattern in the Indian and Pacific Oceans and its relationship with the East Asian summer monsoon. Environ. Res. Lett., 9, 074006, doi:10.1088/1748-9326/9/7/074006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, C. W., X. J. Zhou, P. Zhao, L. X. Chen, and J. H. He, 2011: Onset of East Asian sub-tropical summer monsoon and rainy season in China. Sci. China Earth Sci., 54, 18451853, doi:10.1007/s11430-011-4284-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, Z. Y., and R. H. Zhang, 2016: Influence of soil moisture in eastern China on the East Asian summer monsoon. Adv. Atmos. Sci., 33, 151163, doi:10.1007/s00376-015-5024-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 5
PDF Downloads 11 11 3

The Impact of Layer Perturbation Potential Energy on the East Asian Summer Monsoon

View More View Less
  • 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • 2 University of Chinese Academy of Sciences, Beijing, China
  • 3 State Key Laboratory of Earth Surface Processes and Resource Ecology, and College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
  • 4 Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
  • 5 School of Ocean and Earth Sciences and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • 6 Key Laboratory of Meteorological Disaster of Ministry of Education, and College of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing, China
  • 7 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou, China
  • 8 National Meteorological Information Center, Beijing, China
© Get Permissions
Restricted access

Abstract

This paper analyzes the relationship between the 1000–850-hPa layer perturbation potential energy (LPPE) as the difference in local potential energy between the actual state and the reference state and the East Asian summer monsoon (EASM) using reanalysis and observational datasets. The EASM is closely related to the first-order moment term of LPPE (LPPE1) from the preceding March to the boreal summer over three key regions: the eastern Indian Ocean, the subtropical central Pacific, and midlatitude East Asia. The LPPE1 pattern (−, +, +), with negative values over the eastern Indian Ocean, positive values over the subtropical central Pacific, and positive values over East Asia, corresponds to negative LPPE1 anomalies over the south of the EASM region but positive LPPE1 anomalies over the north of the EASM region, which lead to an anomalous downward branch over the southern region but an upward branch over the northern region. The anomalous vertical motion affects the local meridional circulation over East Asia that leads to a southwesterly wind anomaly over East Asia (south of 30°N) at 850 hPa and anomalous downward motion over 100°–120°E (along 25°–35°N), resulting in a stronger EASM, more kinetic energy over the EASM region, and less boreal summer rainfall in the middle and lower reaches of the Yangtze River valley (24°–36°N, 90°–125°E). These LPPE1 anomalies in the eastern Indian Ocean and subtropical central Pacific appear to be connected to changes in local sea surface temperature through the release of latent heat.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Jianping Li, ljp@bnu.edu.cn

Abstract

This paper analyzes the relationship between the 1000–850-hPa layer perturbation potential energy (LPPE) as the difference in local potential energy between the actual state and the reference state and the East Asian summer monsoon (EASM) using reanalysis and observational datasets. The EASM is closely related to the first-order moment term of LPPE (LPPE1) from the preceding March to the boreal summer over three key regions: the eastern Indian Ocean, the subtropical central Pacific, and midlatitude East Asia. The LPPE1 pattern (−, +, +), with negative values over the eastern Indian Ocean, positive values over the subtropical central Pacific, and positive values over East Asia, corresponds to negative LPPE1 anomalies over the south of the EASM region but positive LPPE1 anomalies over the north of the EASM region, which lead to an anomalous downward branch over the southern region but an upward branch over the northern region. The anomalous vertical motion affects the local meridional circulation over East Asia that leads to a southwesterly wind anomaly over East Asia (south of 30°N) at 850 hPa and anomalous downward motion over 100°–120°E (along 25°–35°N), resulting in a stronger EASM, more kinetic energy over the EASM region, and less boreal summer rainfall in the middle and lower reaches of the Yangtze River valley (24°–36°N, 90°–125°E). These LPPE1 anomalies in the eastern Indian Ocean and subtropical central Pacific appear to be connected to changes in local sea surface temperature through the release of latent heat.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Jianping Li, ljp@bnu.edu.cn
Save