Phase Changes and Seasonal Warming in Early Instrumental Temperature Records

Eric Hillebrand Aarhus University, and Center for Research in Econometric Analysis of Time Series, Aarhus, Denmark

Search for other papers by Eric Hillebrand in
Current site
Google Scholar
PubMed
Close
and
Tommaso Proietti Department of Economics and Finance, Università di Roma “Tor Vergata,” Rome, Italy

Search for other papers by Tommaso Proietti in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Phase analyses of the annual cycle of monthly temperature time series that date back to the eighteenth century show trending behavior that has been difficult to interpret. Negative trends in the estimated phase have been identified with precession of Earth’s axis of rotation, but the implied later onset of seasons is at odds with recent satellite measurements and with the phenological record. Positive trends in the phase and the occurrence of trends of both signs in temperature time series from geographically nearby locations have remained mysterious. This paper shows that there is a mathematical equivalence between trends in phases and seasonally differing warming trends, in particular more intense warming in winters than in summers. Using temperature time series from 16 Northern Hemispheric locations reaching back to the eighteenth century and a statistical model that can estimate the seasonal warming trends, the authors reject the hypothesis that the timing of the seasons in these locations is jointly driven by precession.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eric Hillebrand, ehillebrand@econ.au.dk

Abstract

Phase analyses of the annual cycle of monthly temperature time series that date back to the eighteenth century show trending behavior that has been difficult to interpret. Negative trends in the estimated phase have been identified with precession of Earth’s axis of rotation, but the implied later onset of seasons is at odds with recent satellite measurements and with the phenological record. Positive trends in the phase and the occurrence of trends of both signs in temperature time series from geographically nearby locations have remained mysterious. This paper shows that there is a mathematical equivalence between trends in phases and seasonally differing warming trends, in particular more intense warming in winters than in summers. Using temperature time series from 16 Northern Hemispheric locations reaching back to the eighteenth century and a statistical model that can estimate the seasonal warming trends, the authors reject the hypothesis that the timing of the seasons in these locations is jointly driven by precession.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eric Hillebrand, ehillebrand@econ.au.dk
Save
  • Balling, R., P. J. Michaels, and P. C. Knappenberger, 1998: Analysis of winter and summer warming rates in gridded temperature time series. Climate Res., 9, 175181, doi:10.3354/cr009175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamini, Y., and Y. Hochberg, 1995: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc., 95B, 289300.

    • Search Google Scholar
    • Export Citation
  • Böhm, R., P. D. Jones, J. Hiebl, D. Frank, M. Brunetti, and M. Maugeri, 2010: The early instrumental warm-bias: A solution for long central European temperature series 1760–2007. Climatic Change, 101, 4167, doi:10.1007/s10584-009-9649-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, R., and P. Jones, 1992: Climate since 1500 AD. Routledge, 679 pp.

  • Cohen, J. L., J. C. Furtado, M. Barlow, V. A. Alexeev, and J. E. Cherry, 2012: Asymmetric seasonal temperature trends. Geophys. Res. Lett., 39, L04705, doi:10.1029/2011GL050582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011: Drought under global warming: A review. Wiley Interdiscip. Rev.: Climate Change, 2, 4565, doi:10.1002/wcc.81.

  • Durbin, J., and S. J. Koopman, 2012: Time Series Analysis by State Space Methods. 2nd ed. Oxford University Press, 346 pp.

    • Crossref
    • Export Citation
  • Dwyer, J. G., M. Biasutti, and A. H. Sobel, 2012: Projected changes in the seasonal cycle of surface temperature. J. Climate, 25, 63596374, doi:10.1175/JCLI-D-11-00741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B., 2012: Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction. Cambridge University Press, 263 pp.

  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Harvey, D., and T. C. Mills, 2003: Modelling trends in central England temperatures. J. Forecasting, 22, 3547, doi:10.1002/for.857.

  • Holm, S., 1979: A simple sequentially rejective multiple test procedure. Scand. J. Stat., 6, 6570.

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 996 pp.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.

  • Karl, T. R., P. D. Jones, and R. W. Knight, 1996: Testing for bias in the climate record. Science, 271, 18791880, doi:10.1126/science.271.5257.1879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1980: Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys. Res. Oceans, 85, 55295554, doi:10.1029/JC085iC10p05529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., M. Spelman, and R. Stouffer, 1992: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part II: Seasonal response. J. Climate, 5, 105126, doi:10.1175/1520-0442(1992)005<0105:TROACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manley, G., 1974: Central England temperatures: Monthly means 1659 to 1973. Quart. J. Roy. Meteor. Soc., 100, 389405, doi:10.1002/qj.49710042511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and J. Park, 1996: Greenhouse warming and changes in the seasonal cycle of temperature: Model versus observations. Geophys. Res. Lett., 23, 11111114, doi:10.1029/96GL01066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. E., T. Legg, and C. K. Folland, 1992: A new daily central England temperature series, 1772–1991. Int. J. Climatol., 12, 317342, doi:10.1002/joc.3370120402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parmesan, C., 2007: Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biol., 13, 18601872, doi:10.1111/j.1365-2486.2007.01404.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proietti, T., and E. Hillebrand, 2016: Seasonal changes in central England temperatures. J. Roy. Stat. Soc., 180A, 769791, doi:10.1111/rssa.12229.

    • Search Google Scholar
    • Export Citation
  • Schwartz, M. D., and B. E. Reiter, 2000: Changes in North American spring. Int. J. Climatol., 20, 929932, doi:10.1002/1097-0088(20000630)20:8<929::AID-JOC557>3.0.CO;2-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett., 37, L16707, doi:10.1029/2010GL044136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 11811184, doi:10.1126/science.1139601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M., A. Barrett, J. Stroeve, D. Kindig, and M. Holland, 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 1119, doi:10.5194/tc-3-11-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and E. F. Wood, 2008: Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dyn., 31, 79105, doi:10.1007/s00382-007-0340-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stine, A., and P. Huybers, 2012: Changes in the seasonal cycle of temperature and atmospheric circulation. J. Climate, 25, 73627380, doi:10.1175/JCLI-D-11-00470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stine, A., P. Huybers, and I. Fung, 2009: Changes in the phase of the annual cycle of surface temperature. Nature, 457, 435440, doi:10.1038/nature07675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, doi:10.1029/2007GL029703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R., and R. Clark, 2008: Is spring starting earlier? Holocene, 18, 95104, doi:10.1177/0959683607085599.

  • Thomson, D. J., 1995: The seasons, global temperature, and precession. Science, 268, 5968, doi:10.1126/science.268.5207.59.

  • van Engelen, A. F. V., and J. W. Nellestijn, 1995: Monthly, seasonal and annual means of the air temperature in tenths of centigrades in De Bilt, Netherlands, 1706–1995. KNMI, Climatological Services Division.

  • Vogelsang, T. J., and P. H. Franses, 2005: Are winters getting warmer? Environ. Modell. Softw., 20, 14491455, doi:10.1016/j.envsoft.2004.09.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, O. R., W. Mende, and J. Beer, 1996: Testing for bias in the climate record. Science, 271, 18801881, doi:10.1126/science.271.5257.1880.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 951 480 30
PDF Downloads 297 46 3