• Bailey, D. A., P. B. Rhines, and S. Häkkinen, 2005: Formation and pathways of North Atlantic deep water in a coupled ice–ocean model of the Arctic–North Atlantic Oceans. Climate Dyn., 25, 497516, doi:10.1007/s00382-005-0050-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrier, N., C. Cassou, J. Deshayes, and A.-M. Treguier, 2014: Response of North Atlantic Ocean circulation to atmospheric weather regimes. J. Phys. Oceanogr., 44, 179201, doi:10.1175/JPO-D-12-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 16871712, doi:10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böning, C. W., M. Scheinert, J. Dengg, A. Biastoch, and A. Funk, 2006: Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys. Res. Lett., 33, L21S01, doi:10.1029/2006GL026906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., and J. Marshall, 2016: Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: A review. Rev. Geophys., 54, 563, doi:10.1002/2015RG000493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992a: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859881, doi:10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992b: Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation. J. Climate, 5, 354369, doi:10.1175/1520-0442(1992)005<0354:LASHFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. G. Yeager, Y.-O. Kwon, J. J. Tribbia, A. S. Phillips, and J. W. Hurrell, 2012: Variability of the Atlantic meridional overturning circulation in CCSM4. J. Climate, 25, 51535172, doi:10.1175/JCLI-D-11-00463.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661676, doi:10.1007/s003820000075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. Zeng, 2012: Multicentennial variability of the Atlantic meridional overturning circulation and its climatic influence in a 4000 year simulation of the GFDL CM2.1 climate model. Geophys. Res. Lett., 39, L13702, doi:10.1029/2012GL052107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. Zeng, 2016: The impact of the North Atlantic Oscillation on climate through its influence on the Atlantic meridional overturning circulation. J. Climate, 29, 941962, doi:10.1175/JCLI-D-15-0396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’S CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., and J. Willebrand, 2001: Mechanism of interannual to decadal variability of the North Atlantic circulation. J. Climate, 14, 22662280, doi:10.1175/1520-0442(2001)014<2266:MOITDV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerdes, R., and C. Köberle, 1995: On the influence of DSOW in a numerical model of the North Atlantic general circulation. J. Phys. Oceanogr., 25, 26242642, doi:10.1175/1520-0485(1995)025<2624:OTIODI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and E. Tziperman, 1995: A linear thermohaline oscillator driven by stochastic atmospheric forcing. J. Climate, 8, 24402453, doi:10.1175/1520-0442(1995)008<2440:ALTODB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., and R. Zhang, 2010: On the path of the Gulf Stream and the Atlantic meridional overturning circulation. J. Climate, 23, 31463154, doi:10.1175/2010JCLI3310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., and C. Frankignoul, 2012: Stochastically-driven multidecadal variability of the Atlantic meridional overturning circulation in ccsm3. Climate Dyn., 38, 859876, doi:10.1007/s00382-011-1040-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., and C. Frankignoul, 2014: Mechanisms of multidecadal Atlantic meridional overturning circulation variability diagnosed in depth versus density space. J. Climate, 27, 93599376, doi:10.1175/JCLI-D-14-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levermann, A., and A. Born, 2007: Bistability of the Atlantic subpolar gyre in a coarse-resolution climate model. Geophys. Res. Lett., 34, L24605, doi:10.1029/2007GL031732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., 2010: Deconstructing the conveyor belt. Science, 328, 15071511, doi:10.1126/science.1189250.

  • Lozier, M. S., V. Roussenov, M. S. Reed, and R. G. Williams, 2010: Opposing decadal changes for the North Atlantic meridional overturning circulation. Nat. Geosci., 3, 728734, doi:10.1038/ngeo947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and Coauthors, 2017: Overturning in the subpolar North Atlantic program: A new international ocean observing system. Bull. Amer. Meteor. Soc., 98, 737752, doi:10.1175/BAMS-D-16-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacMartin, D. G., L. Zanna, and E. Tziperman, 2016: Suppression of Atlantic meridional overturning circulation variability at increased CO2. J. Climate, 29, 41554164, doi:10.1175/JCLI-D-15-0533.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and J. M. Lees, 1996: Robust estimation of background noise and signal detection in climatic time series. Climatic Change, 33, 409445, doi:10.1007/BF00142586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., H. Johnson, and J. Goodman, 2001: A study of the interaction of the North Atlantic Oscillation with ocean circulation. J. Climate, 14, 13991421, doi:10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mignot, J., and C. Frankignoul, 2003: On the interannual variability of surface salinity in the Atlantic. Climate Dyn., 20, 555565, doi:10.1007/s00382-002-0294-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., M. A. Alexander, and J. D. Scott, 2011: An empirical model of tropical ocean dynamics. Climate Dyn., 37, 18231841, doi:10.1007/s00382-011-1034-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 19992024, doi:10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. M. Hartten, 2014: Stochastic forcing of north tropical Atlantic sea surface temperatures by the North Atlantic Oscillation. Geophys. Res. Lett., 41, 21262132, doi:10.1002/2014GL059252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., and A. V. Fedorov, 2013: The leading, interdecadal eigenmode of the Atlantic meridional overturning circulation in a realistic ocean model. J. Climate, 26, 21602183, doi:10.1175/JCLI-D-11-00023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smeed, D., and Coauthors, 2014: Observed decline of the Atlantic meridional overturning circulation 2004–2012. Ocean Sci., 10, 2938, doi:10.5194/os-10-29-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., J. Li, and F.-F. Jin, 2015: A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO. Climate Dyn., 45, 20832099, doi:10.1007/s00382-014-2459-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., 2005: Classical Mechanics. University Science Books, 786 pp.

  • Tulloch, R., and J. Marshall, 2012: Exploring mechanisms of variability and predictability of Atlantic meridional overturning circulation in two coupled climate models. J. Climate, 25, 40674080, doi:10.1175/JCLI-D-11-00460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tziperman, E., L. Zanna, and C. Penland, 2008: Nonnormal thermohaline circulation dynamics in a coupled ocean–atmosphere GCM. J. Phys. Oceanogr., 38, 588604, doi:10.1175/2007JPO3769.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., T. Bruns, I. Fischer-Bruns, and K. Hasselmann, 1988: Principal oscillation pattern analysis of the 30- to 60-day oscillation in general circulation model equatorial troposphere. J. Geophys. Res., 93, 11 02211 036, doi:10.1029/JD093iD09p11022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., C. C. Raible, T. F. Stocker, and M. Renold, 2010: Simulated decadal oscillations of the Atlantic meridional overturning circulation in a cold climate state. Climate Dyn., 34, 101121, doi:10.1007/s00382-009-0540-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanna, L., 2012: Forecast skill and predictability of observed Atlantic sea surface temperatures. J. Climate, 25, 50475056, doi:10.1175/JCLI-D-11-00539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2008: Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 35, L20705, doi:10.1029/2008GL035463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2010: Latitudinal dependence of Atlantic meridional overturning circulation (AMOC) variations. Geophys. Res. Lett., 37, L16703, doi:10.1029/2010GL044474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and G. K. Vallis, 2006: Impact of great salinity anomalies on the low-frequency variability of the North Atlantic climate. J. Climate, 19, 470482, doi:10.1175/JCLI3623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and G. K. Vallis, 2007: The role of bottom vortex stretching on the path of the North Atlantic western boundary current and on the northern recirculation gyre. J. Phys. Oceanogr., 37, 20532080, doi:10.1175/JPO3102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 51 51 10
PDF Downloads 20 20 2

Simultaneous Evolution of Gyre and Atlantic Meridional Overturning Circulation Anomalies as an Eigenmode of the North Atlantic System

View More View Less
  • 1 Department of Atmospheric Science, University of Utah, Salt Lake City, Utah
  • 2 NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The authors identify an interdecadal oscillatory mode of the North Atlantic atmosphere–ocean system in a general circulation model (GFDL CM2.1) via a linear inverse model (LIM). The oscillation mechanism is mostly embedded in the subpolar gyre: anomalous advection generates density anomalies in the eastern subpolar gyre, which propagate along the mean gyre circulation and reach the subpolar gyre center around 10 years later, when associated anomalous advection of the opposite sign starts the other half cycle. As density anomalies reach the Labrador Sea deep convection region, Atlantic meridional overturning circulation (AMOC) anomalies are also induced. Both the gyre and AMOC anomalies then propagate equatorward slowly, following the advection of density anomalies. The oscillation is further demonstrated to be more likely an ocean-only mode while excited by the atmospheric forcing; in particular, it can be approximated as a linearly driven damped oscillator that is partly excited by the North Atlantic Oscillation (NAO). The slowly evolving interdecadal oscillation significantly improves and prolongs the LIM’s prediction skill of sea surface temperature (SST) evolution.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bowen Zhao, bowen.zhao@yale.edu

Abstract

The authors identify an interdecadal oscillatory mode of the North Atlantic atmosphere–ocean system in a general circulation model (GFDL CM2.1) via a linear inverse model (LIM). The oscillation mechanism is mostly embedded in the subpolar gyre: anomalous advection generates density anomalies in the eastern subpolar gyre, which propagate along the mean gyre circulation and reach the subpolar gyre center around 10 years later, when associated anomalous advection of the opposite sign starts the other half cycle. As density anomalies reach the Labrador Sea deep convection region, Atlantic meridional overturning circulation (AMOC) anomalies are also induced. Both the gyre and AMOC anomalies then propagate equatorward slowly, following the advection of density anomalies. The oscillation is further demonstrated to be more likely an ocean-only mode while excited by the atmospheric forcing; in particular, it can be approximated as a linearly driven damped oscillator that is partly excited by the North Atlantic Oscillation (NAO). The slowly evolving interdecadal oscillation significantly improves and prolongs the LIM’s prediction skill of sea surface temperature (SST) evolution.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bowen Zhao, bowen.zhao@yale.edu
Save