• Allen, J. T., and D. J. Karoly, 2014: A climatology of Australian severe thunderstorm environments 1979–2011: Inter-annual variability and ENSO influence. Int. J. Climatol., 34, 8197, doi:10.1002/joc.3667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., D. J. Karoly, and K. J. Walsh, 2014: Future Australian severe thunderstorm environments. Part II: The influence of a strongly warming climate on convective environments. J. Climate, 27, 38483868, doi:10.1175/JCLI-D-13-00426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, G., and D. Klugmann, 2014: A European lightning density analysis using 5 years of ATDnet data. Nat. Hazards Earth Syst. Sci., 14, 815829, doi:10.5194/nhess-14-815-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2009: Proximity soundings for severe convection for Europe and the United States from reanalysis data. Atmos. Res., 93, 546553, doi:10.1016/j.atmosres.2008.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2013: Severe thunderstorms and climate change. Atmos. Res., 123, 129138, doi:10.1016/j.atmosres.2012.04.002.

  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 73–94, doi:10.1016/S0169-8095(03)00045-0.

    • Crossref
    • Export Citation
  • Brooks, H. E., A. R. Anderson, K. Riemann, I. Ebbers, and H. Flachs, 2007: Climatological aspects of convective parameters from the NCAR/NCEP reanalysis. Atmos. Res., 83, 294305, doi:10.1016/j.atmosres.2005.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craven, J. P., R. E. Jewell, and H. E. Brooks, 2002: Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels. Wea. Forecasting, 17, 885890, doi:10.1175/1520-0434(2002)017<0885:CBOCCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., M.-S. Yao, and J. Jonas, 2007: Will moist convection be stronger in a warmer climate? Geophys. Res. Lett., 34, L16703, doi:10.1029/2007GL030525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déqué, M., and Coauthors, 2007: An intercomparison of regional climate simulations for Europe: Assessing uncertainties in model projections. Climatic Change, 81 (Suppl. 1), 5370, doi:10.1007/s10584-006-9228-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessens, J., C. Berthet, and J. L. Sanchez, 2015: Change in hailstone size distributions with an increase in the melting level height. Atmos. Res., 158159, 245–253, doi:10.1016/j.atmosres.2014.07.004.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., M. Scherer, and R. J. Trapp, 2013: Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl. Acad. Sci. USA, 110, 16 36116 366, doi:10.1073/pnas.1307758110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9, 625629, doi:10.1175/1520-0434(1994)009<0625:TEONTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dotzek, N., P. Groenemeijer, B. Feuerstein, and A. M. Holzer, 2009: Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmos. Res., 93, 575586, doi:10.1016/j.atmosres.2008.10.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, J. D., and W. A. Gallus Jr., 2010: Spring and summer Midwestern severe weather reports in supercells compared to other morphologies. Wea. Forecasting, 25, 190206, doi:10.1175/2009WAF2222338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galway, J. G., 1956: The lifted index as a predictor of latent instability. Bull. Amer. Meteor. Soc., 37, 528529.

  • Gensini, V. A., and W. S. Ashley, 2011: Climatology of potentially severe convective environments from North American regional reanalysis. Electron. J. Severe Storms Meteor., 6 (8). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/85.]

    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., and T. L. Mote, 2014: Estimations of hazardous convective weather in the United States using dynamical downscaling. J. Climate, 27, 65816589, doi:10.1175/JCLI-D-13-00777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., and T. L. Mote, 2015: Downscaled estimates of late 21st century severe weather from CCSM3. Climatic Change, 129, 307321, doi:10.1007/s10584-014-1320-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., C. A. Ramseyer, and T. L. Mote, 2014: Future convective environments using NARCCAP. Int. J. Climatol., 34, 16991705, doi:10.1002/joc.3769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175183.

    • Search Google Scholar
    • Export Citation
  • Groenemeijer, P. H., and A. van Delden, 2007: Sounding-derived parameters associated with large hail and tornadoes in the Netherlands. Atmos. Res., 83, 473487, doi:10.1016/j.atmosres.2005.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groenemeijer, P. H., and T. Kühne, 2014: A climatology of tornadoes in Europe: Results from the European Severe Weather Database. Mon. Wea. Rev., 142, 47754790, doi:10.1175/MWR-D-14-00107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, D., and Coauthors, 2014: EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Change, 14, 563578, doi:10.1007/s10113-013-0499-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, doi:10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jülich Supercomputing Centre, 2016: JURECA: General-purpose supercomputer at Jülich Supercomputing Centre. J. Large-Scale Res. Facil., 2, A62, doi:10.17815/jlsrf-2-121.

    • Search Google Scholar
    • Export Citation
  • Kapsch, M. L., M. Kunz, R. Vitolo, and T. Economou, 2012: Long-term trends of hail‐related weather types in an ensemble of regional climate models using a Bayesian approach. J. Geophys. Res., 117, D15107, doi:10.1029/2011JD017185.

    • Search Google Scholar
    • Export Citation
  • Kotlarski, S. K., and Coauthors, 2014: Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev., 7, 12971333, doi:10.5194/gmd-7-1297-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunz, M., 2007: The skill of convective parameters and indices to predict isolated and severe thunderstorms. Nat. Hazards Earth Syst. Sci., 7, 327342, doi:10.5194/nhess-7-327-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, P. T., H. E. Brooks, and D. J. Karoly, 2009: Preliminary investigation into the severe thunderstorm environment of Europe simulated by the Community Climate System Model 3. Atmos. Res., 93, 607618, doi:10.1016/j.atmosres.2008.09.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, S., M. Kunz, and K. Keuler, 2015: Development and application of a logistic model to estimate the past and future hail potential in Germany. J. Geophys. Res. Atmos., 120, 39393956. doi:10.1002/2014JD022959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, doi:10.1038/nature08823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Normand, C. W. B., 1938: On instability from water vapour. Quart. J. Roy. Meteor. Soc., 64, 4770, doi:10.1002/qj.49706427306.

  • Poelman, D. R., W. Schulz, G. Diendorfer, and M. Bernardi, 2016: The European lightning location system EUCLID—Part 2: Observations. Nat. Hazards Earth Syst. Sci., 16, 607616, doi:10.5194/nhess-16-607-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., G. J. Holland, R. M. Rasmussen, J. Done, K. Ikeda, M. P. Clark, and C. H. Liu, 2013: Importance of regional climate model grid spacing for the simulation of heavy precipitation in the Colorado headwaters. J. Climate, 26, 48484857, doi:10.1175/JCLI-D-12-00727.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection‐permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, doi:10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2016: Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: High resolution, high benefits? Climate Dyn., 46, 383412, doi:10.1007/s00382-015-2589-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Púčik, T., P. Groenemeijer, D. Rýva, and M. Kolář, 2015: Proximity soundings of severe and nonsevere thunderstorms in central Europe. Mon. Wea. Rev., 143, 48054821, doi:10.1175/MWR-D-15-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, doi:10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sander, J., 2011: Extremwetterereignisse im Klimawandel: Bewertung der derzeitigen und zukünftigen Gefährdung. Ph.D. thesis, University of Munich, 125 pp.

  • Schulz, W., G. Diendorfer, S. Pedeboy, and D. R. Poelman, 2016: The European lightning location system EUCLID—Part 1: Performance analysis and validation. Nat. Hazards Earth Syst. Sci., 16, 595605, doi:10.5194/nhess-16-595-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seeley, J. T., and D. M. Romps, 2015: The effect of global warming on severe thunderstorms in the United States. J. Climate, 28, 24432458, doi:10.1175/JCLI-D-14-00382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, doi:10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. T. Allen, V. A. Gensini, and H. E. Brooks, 2015: Climate and hazardous convective weather. Curr. Climate Change Rep., 1, 6073, doi:10.1007/s40641-015-0006-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and K. A. Hoogewind, 2016: The realization of extreme tornadic storms events under future anthropogenic climate change. J. Climate, 29, 52515265, doi:10.1175/JCLI-D-15-0623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., B. A. Halvorson, and N. S. Diffenbaugh, 2007a: Telescoping, multimodel approaches to evaluate extreme convective weather under future climates. J. Geophys. Res., 112, D20109, doi:10.1029/2006JD008345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., N. S. Diffenbaugh, H. E. Brooks, M. E. Baldwin, E. D. Robinson, and J. S. Pal, 2007b: Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl. Acad. Sci. USA, 104, 19 71919 723, doi:10.1073/pnas.0705494104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., N. S. Diffenbaugh, and A. Gluhovsky, 2009: Transient response of severe thunderstorm forcing to elevated greenhouse gas concentrations. Geophys. Res. Lett., 36, L01703, doi:10.1029/2008GL036203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., E. D. Robinson, M. E. Baldwin, N. S. Diffenbaugh, and B. R. Schwedler, 2011: Regional climate of hazardous convective weather through high-resolution dynamical downscaling. Climate Dyn., 37, 677688, doi:10.1007/s00382-010-0826-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Klooster, S. L., and P. J. Roebber, 2009: Surface-based convective potential in the contiguous United States in a business-as-usual future climate. J. Climate, 22, 33173330, doi:10.1175/2009JCLI2697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548, doi:10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westermayer, A. T., P. Groenemeijer, G. Pistotnik, R. Sausen, and E. Faust, 2016: Identification of favorable environments for thunderstorms in reanalysis data. Meteor. Z., 26, 5970, doi:10.1127/metz/2016/0754.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 206 206 57
PDF Downloads 185 185 49

Future Changes in European Severe Convection Environments in a Regional Climate Model Ensemble

View More View Less
  • 1 European Severe Storms Laboratory, Weßling, Germany
  • 2 Department of Geography, Masaryk University, Brno, Czech Republic
  • 3 Georisk Department, Munich Re, Munich, Germany
  • 4 Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
  • 5 Wegener Centre for Climate and Global Change, University of Graz, Graz, Austria
  • 6 National Center for Atmospheric Research, Boulder, Colorado
  • 7 Royal Netherlands Meteorological Institute, De Bilt, Netherlands
  • 8 National University of Ireland, Maynooth, Ireland
  • 9 Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
© Get Permissions
Restricted access

Abstract

The occurrence of environmental conditions favorable for severe convective storms was assessed in an ensemble of 14 regional climate models covering Europe and the Mediterranean with a horizontal grid spacing of 0.44°. These conditions included the collocated presence of latent instability and strong deep-layer (surface to 500 hPa) wind shear, which is conducive to the severe and well-organized convective storms. The occurrence of precipitation in the models was used as a proxy for convective initiation. Two climate scenarios (RCP4.5 and RCP8.5) were investigated by comparing two future periods (2021–50 and 2071–2100) to a historical period (1971–2000) for each of these scenarios. The ensemble simulates a robust increase (change larger than twice the ensemble sample standard deviation) in the frequency of occurrence of unstable environments (lifted index ≤ −2) across central and south-central Europe in the RCP8.5 scenario in the late twenty-first century. This increase coincides with the increase in lower-tropospheric moisture. Smaller, less robust changes were found until midcentury in the RCP8.5 scenario and in the RCP4.5 scenario. Changes in the frequency of situations with strong (≥15 m s−1) deep-layer shear were found to be small and not robust, except across far northern Europe, where a decrease in shear is projected. By the end of the century, the simultaneous occurrence of latent instability, strong deep-layer shear, and model precipitation is simulated to increase by up to 100% across central and eastern Europe in the RCP8.5 and by 30%–50% in the RCP4.5 scenario. Until midcentury, increases in the 10%–25% range are forecast for most regions. A large intermodel variability is present in the ensemble and is primarily due to the uncertainties in the frequency of the occurrence of unstable environments.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author: Tomáš Púčik, tomas.pucik@essl.org

Abstract

The occurrence of environmental conditions favorable for severe convective storms was assessed in an ensemble of 14 regional climate models covering Europe and the Mediterranean with a horizontal grid spacing of 0.44°. These conditions included the collocated presence of latent instability and strong deep-layer (surface to 500 hPa) wind shear, which is conducive to the severe and well-organized convective storms. The occurrence of precipitation in the models was used as a proxy for convective initiation. Two climate scenarios (RCP4.5 and RCP8.5) were investigated by comparing two future periods (2021–50 and 2071–2100) to a historical period (1971–2000) for each of these scenarios. The ensemble simulates a robust increase (change larger than twice the ensemble sample standard deviation) in the frequency of occurrence of unstable environments (lifted index ≤ −2) across central and south-central Europe in the RCP8.5 scenario in the late twenty-first century. This increase coincides with the increase in lower-tropospheric moisture. Smaller, less robust changes were found until midcentury in the RCP8.5 scenario and in the RCP4.5 scenario. Changes in the frequency of situations with strong (≥15 m s−1) deep-layer shear were found to be small and not robust, except across far northern Europe, where a decrease in shear is projected. By the end of the century, the simultaneous occurrence of latent instability, strong deep-layer shear, and model precipitation is simulated to increase by up to 100% across central and eastern Europe in the RCP8.5 and by 30%–50% in the RCP4.5 scenario. Until midcentury, increases in the 10%–25% range are forecast for most regions. A large intermodel variability is present in the ensemble and is primarily due to the uncertainties in the frequency of the occurrence of unstable environments.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author: Tomáš Púčik, tomas.pucik@essl.org
Save