Dry Intrusions: Lagrangian Climatology and Dynamical Impact on the Planetary Boundary Layer

Shira Raveh-Rubin Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Shira Raveh-Rubin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Dry-air intrusions (DIs) are dry, deeply descending airstreams from the upper troposphere toward the planetary boundary layer (PBL). The significance of DIs spans a variety of aspects, including the interaction with convection, extratropical cyclones and fronts, the PBL, and extreme surface weather. Here, a Lagrangian definition for DI trajectories is used and applied to ECMWF interim reanalysis (ERA-Interim) data. Based on the criterion of a minimum descent of 400 hPa during 48 h, a first global Lagrangian climatology of DI trajectories is compiled for the years 1979–2014, allowing quantitative understanding of the occurrence and variability of DIs, as well as the dynamical and thermodynamical interactions that determine their impact. DIs occur mainly in winter. While traveling equatorward from 40°–50° latitude, DIs typically reach the lower troposphere (with maximum frequencies of ~10% in winter) in the storm-track regions, as well as over the Mediterranean Sea, Arabian Sea, and eastern North Pacific, off the western coast of South America, South Africa, and Australia, and across the Antarctic coast. The DI descent is nearly adiabatic, with a mean potential temperature decrease of 3 K in two days. Relative humidity drops strongly during the first descent day and increases in the second day, because of mixing into the moist PBL. Significant destabilization of the lower levels occurs beneath DIs, accompanied by increased 10-m wind gusts, intense surface heat and moisture fluxes, and elevated PBL heights. Interestingly, only 1.2% of all DIs are found to originate from the stratosphere.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shira Raveh-Rubin, shira.raveh@env.ethz.ch

Abstract

Dry-air intrusions (DIs) are dry, deeply descending airstreams from the upper troposphere toward the planetary boundary layer (PBL). The significance of DIs spans a variety of aspects, including the interaction with convection, extratropical cyclones and fronts, the PBL, and extreme surface weather. Here, a Lagrangian definition for DI trajectories is used and applied to ECMWF interim reanalysis (ERA-Interim) data. Based on the criterion of a minimum descent of 400 hPa during 48 h, a first global Lagrangian climatology of DI trajectories is compiled for the years 1979–2014, allowing quantitative understanding of the occurrence and variability of DIs, as well as the dynamical and thermodynamical interactions that determine their impact. DIs occur mainly in winter. While traveling equatorward from 40°–50° latitude, DIs typically reach the lower troposphere (with maximum frequencies of ~10% in winter) in the storm-track regions, as well as over the Mediterranean Sea, Arabian Sea, and eastern North Pacific, off the western coast of South America, South Africa, and Australia, and across the Antarctic coast. The DI descent is nearly adiabatic, with a mean potential temperature decrease of 3 K in two days. Relative humidity drops strongly during the first descent day and increases in the second day, because of mixing into the moist PBL. Significant destabilization of the lower levels occurs beneath DIs, accompanied by increased 10-m wind gusts, intense surface heat and moisture fluxes, and elevated PBL heights. Interestingly, only 1.2% of all DIs are found to originate from the stratosphere.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shira Raveh-Rubin, shira.raveh@env.ethz.ch
Save
  • Browning, K. A., 1993: Evolution of a mesoscale upper tropospheric vorticity maximum and comma cloud from a cloud‐free two‐dimensional potential vorticity anomaly. Quart. J. Roy. Meteor. Soc., 119, 883906, doi:10.1002/qj.49711951302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1997: The dry intrusion perspective of extra-tropical cyclone development. Meteor. Appl., 4, 317324, doi:10.1017/S1350482797000613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and R. Reynolds, 1994: Diagnostic study of a narrow cold‐frontal rainband and severe winds associated with a stratospheric intrusion. Quart. J. Roy. Meteor. Soc., 120, 235257, doi:10.1002/qj.49712051602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and N. M. Roberts, 1994a: Use of satellite imagery to diagnose events leading to frontal thunderstorms: Part I of a case study. Meteor. Appl., 1, 303310, doi:10.1002/met.5060010401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and N. M. Roberts, 1994b: Structure of a frontal cyclone. Quart. J. Roy. Meteor. Soc., 120, 15351557, doi:10.1002/qj.49712052006.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and B. W. Golding, 1995: Mesoscale aspects of a dry intrusion within a vigorous cyclone. Quart. J. Roy. Meteor. Soc., 121, 463493, doi:10.1002/qj.49712152302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 14981509, doi:10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, F. H., and J. P. Millard, 1985: A composite study of comma clouds and their association with severe weather over the Great Plains. Mon. Wea. Rev., 113, 370387, doi:10.1175/1520-0493(1985)113<0370:ACSOCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cau, P., J. Methven, and B. Hoskins, 2005: Representation of dry tropical layers and their origins in ERA-40 data. J. Geophys. Res., 110, D06110, doi:10.1029/2004JD004928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cau, P., J. Methven, and B. Hoskins, 2007: Origins of dry air in the tropics and subtropics. J. Climate, 20, 27452759, doi:10.1175/JCLI4176.1.

  • Cotton, W. R., G. D. Alexander, R. Hertenstein, R. L. Walko, R. L. McAnelly, and M. Nicholls, 1995: Cloud venting—A review and some new global annual estimates. Earth-Sci. Rev., 39, 169206, doi:10.1016/0012-8252(95)00007-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Croci-Maspoli, M., C. Schwierz, and H. C. Davies, 2007: A multifaceted climatology of atmospheric blocking and its recent linear trend. J. Climate, 20, 633649, doi:10.1175/JCLI4029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danielsen, E. F., 1968: Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity. J. Atmos. Sci., 25, 502518, doi:10.1175/1520-0469(1968)025<0502:STEBOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dotzek, N., P. Groenemeijer, B. Feuerstein, and A. M. Holzer, 2009: Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmos. Res., 93, 575586, doi:10.1016/j.atmosres.2008.10.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, doi:10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebel, A., H. Hass, H. J. Jakobs, M. Laube, M. Memmesheimer, A. Oberreuter, H. Geiss, and Y. H. Kuo, 1991: Simulation of ozone intrusion caused by a tropopause fold and cut-off low. Atmos. Environ., 25, 21312144, doi:10.1016/0960-1686(91)90089-P.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2007: IFS Documentation CY31R1—Part IV: Physical Processes. ECMWF, 155 pp. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2007/9221-part-iv-physical-processes.pdf.]

  • Fröhlich, L., and P. Knippertz, 2008: Identification and global climatology of upper-level troughs at low latitudes. Meteor. Z., 17, 565573, doi:10.1127/0941-2948/2008/0320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, S., S. Yang, and B. Chen, 2010: Diagnostic analyses of dry intrusion and nonuniformly saturated instability during a rainfall event. J. Geophys. Res., 115, D02102, doi:10.1029/2009JD012467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffiths, M., A. J. Thorpe, and K. A. Browning, 2000: Convective destabilization by a tropopause fold diagnosed using potential-vorticity inversion. Quart. J. Roy. Meteor. Soc., 126, 125144, doi:10.1002/qj.49712656207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Itoh, H., and Y. Narazaki, 2016: Fast descent routes from within or near the stratosphere to the surface at Fukuoka, Japan, studied using 7Be measurements and trajectory calculations. Atmos. Chem. Phys., 16, 62416261, doi:10.5194/acp-16-6241-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, R. P., and J. H. E. Clark, 2003: The diagnosis of vertical motion within dry intrusions. Wea. Forecasting, 18, 825835, doi:10.1175/1520-0434(2003)018<0825:TDOVMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Josey, S. A., 2003: Changes in the heat and freshwater forcing of the eastern Mediterranean and their influence on deep water formation. J. Geophys. Res., 108, 3237, doi:10.1029/2003JC001778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., 1998: Observations of Rossby waves linked to convection over the eastern tropical Pacific. J. Atmos. Sci., 55, 321339, doi:10.1175/1520-0469(1998)055<0321:OORWLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, P., H. Wernli, and H. C. Davies, 2006: An event-based jet-stream climatology and typology. Int. J. Climatol., 26, 283301, doi:10.1002/joc.1255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lagouvardos, K., and V. Kotroni, 2000: Use of METEOSAT water-vapour images for the diagnosis of a vigorous stratospheric intrusion over the central Mediterranean. Meteor. Appl., 7, 205210, doi:10.1017/S1350482700001596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langford, A. O., R. B. Pierce, and P. J. Schultz, 2015: Stratospheric intrusions, the Santa Ana winds, and wildland fires in Southern California. Geophys. Res. Lett., 42, 60916097, doi:10.1002/2015GL064964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, M., A. M. Fiore, L. W. Horowitz, A. O. Langford, S. J. Oltmans, D. Tarasick, and H. E. Rieder, 2015: Climate variability modulates western US ozone air quality in spring via deep stratospheric intrusions. Nat. Commun., 6, 7105, doi:10.1038/ncomms8105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, doi:10.1175/JCLI-D-12-00720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medeiros, B., A. Hall, and B. Stevens, 2005: What controls the mean depth of the PBL? J. Climate, 18, 31573172, doi:10.1175/JCLI3417.1.

  • Michel, Y., and F. Bouttier, 2006: Automated tracking of dry intrusions on satellite water vapour imagery and model output. Quart. J. Roy. Meteor. Soc., 132, 22572276, doi:10.1256/qj.05.179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mills, G. A., 2008: Abrupt surface drying and fire weather. Part 2: A preliminary synoptic climatology in the forested areas of southern Australia. Aust. Meteor. Mag., 57, 311328.

    • Search Google Scholar
    • Export Citation
  • Pollina, J. B., B. A. Colle, and J. J. Charney, 2013: Climatology and meteorological evolution of major wildfire events over the northeast United States. Wea. Forecasting, 28, 175193, doi:10.1175/WAF-D-12-00009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raveh-Rubin, S., and H. Wernli, 2015: Large-scale wind and precipitation extremes in the Mediterranean: A climatological analysis for 1979–2012. Quart. J. Roy. Meteor. Soc., 141, 24042417, doi:10.1002/qj.2531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raveh-Rubin, S., and H. Wernli, 2016: Large-scale wind and precipitation extremes in the Mediterranean: Dynamical aspects of five selected cyclone events. Quart. J. Roy. Meteor. Soc., 142, 30973114, doi:10.1002/qj.2891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., 1955: A study of a characteristic type of upper-level frontogenesis. J. Meteor., 12, 226237, doi:10.1175/1520-0469(1955)012<0226:ASOACT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and E. F. Danielsen, 1958: Fronts in the vicinity of the tropopause. Arch. Meteor. Geophys. Bioklimatol., 11, 117, doi:10.1007/BF02247637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roca, R., J. P. Lafore, C. Piriou, and J. L. Redelsperger, 2005: Extratropical dry-air intrusions into the West African monsoon mid troposphere: An important factor for the convective activity over the Sahel. J. Atmos. Sci., 62, 390407, doi:10.1175/JAS-3366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, A., G. Vaughan, E. G. Norton, C. J. Morcrette, K. A. Browning, and A. M. Blyth, 2008: Convective inhibition beneath an upper‐level PV anomaly. Quart. J. Roy. Meteor. Soc., 134, 371383, doi:10.1002/qj.214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, A., G. Vaughan, E. G. Norton, H. Ricketts, C. J. Morcrette, T. J. Hewison, K. Browning, and A. M. Blyth, 2009: Convection forced by a descending dry layer and low‐level moist convergence. Tellus, 61A, 250263, doi:10.1111/j.1600-0870.2008.00382.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, A., G. Vaughan, and E. G. Norton, 2012: Large‐scale potential vorticity anomalies and deep convection. Quart. J. Roy. Meteor. Soc., 138, 16271639, doi:10.1002/qj.1875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savijärvi, H., 2006: Radiative and turbulent heating rates in the clear‐air boundary layer. Quart. J. Roy. Meteor. Soc., 132, 147161, doi:10.1256/qj.05.61.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoeffler, F. S., 2013: Large wildfire growth influenced by tropospheric and stratospheric dry slots in the United States. 17th Conf. on the Middle Atmosphere, Newport, RI, 5.1. [Available online at https://ams.confex.com/ams/19Fluid17Middle/webprogram/Paper225271.html.]

  • Škerlak, B., M. Sprenger, and H. Wernli, 2014: A global climatology of stratosphere–troposphere exchange using the ERA-Interim data set from 1979 to 2011. Atmos. Chem. Phys., 14, 913937, doi:10.5194/acp-14-913-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and H. Wernli, 2015: The LAGRANTO Lagrangian analysis tool—version 2.0. Geosci. Model Dev., 8, 25692586, doi:10.5194/gmd-8-2569-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and Coauthors, 2017: Global climatologies of Eulerian and Lagrangian flow features based on ERA-Interim reanalyses. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00299.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., 2001: A 1‐year Lagrangian “climatology” of airstreams in the Northern Hemisphere troposphere and lowermost stratosphere. J. Geophys. Res., 106, 72637279, doi:10.1029/2000JD900570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., and Coauthors, 2000: The influence of stratospheric intrusions on alpine ozone concentrations. Atmos. Environ., 34, 13231354, doi:10.1016/S1352-2310(99)00320-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic‐wave life‐cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, doi:10.1002/qj.49711950903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., D. Keyser, K. F. Brill, and C. H. Wash, 1985: The Presidents’ Day cyclone of 18–19 February 1979: Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Mon. Wea. Rev., 113, 962988, doi:10.1175/1520-0493(1985)113<0962:TPDCOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Engeln, A., and J. Teixeira, 2013: A planetary boundary layer height climatology derived from ECMWF reanalysis data. J. Climate, 26, 65756590, doi:10.1175/JCLI-D-12-00385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., 2005: Impact of potential vorticity intrusions on subtropical upper tropospheric humidity. J. Geophys. Res., 110, D11305, doi:10.1029/2004JD005664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and L. M. Polvani, 2000: Intrusions into the tropical upper troposphere. Geophys. Res. Lett., 27, 38573860, doi:10.1029/2000GL012250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and B. M. Funatsu, 2003: Intrusions into tropical upper troposphere: Three dimensional structure and accompanying ozone and OLR distributions. J. Atmos. Sci., 60, 637653, doi:10.1175/1520-0469(2003)060<0637:IITTUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., 1997: A Lagrangian-based analysis of extratropical cyclones. II: A detailed case-study. Quart. J. Roy. Meteor. Soc., 123, 16771706, doi:10.1002/qj.49712354211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and H. C. Davies, 1997: A Lagrangian-based analysis of extratropical cyclones. I. The method and some applications. Quart. J. Roy. Meteor. Soc., 123, 467489, doi:10.1002/qj.49712353811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and M. Bourqui, 2002: A Lagrangian “1‐year climatology” of (deep) cross‐tropopause exchange in the extratropical Northern Hemisphere. J. Geophys. Res., 107, 4021, doi:10.1029/2001JD000812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507, doi:10.1175/JAS3766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winschall, A., S. Pfahl, H. Sodemann, and H. Wernli, 2012: Impact of North Atlantic evaporation hot spots on southern Alpine heavy precipitation events. Quart. J. Roy. Meteor. Soc., 138, 12451258, doi:10.1002/qj.987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., X. Cui, and L. Ran, 2009: Analyses of dry intrusion and instability during a heavy rainfall event that occurred in northern China. Atmos. Oceanic Sci. Lett., 2, 108112, doi:10.1080/16742834.2009.11446779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, M. V., G. A. Monk, and K. A. Browning, 1987: Interpretation of satellite imagery of a rapidly deepening cyclone. Quart. J. Roy. Meteor. Soc., 113, 10891115, doi:10.1002/qj.49711347803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., Z. Wang, T. J. Dunkerton, M. S. Peng, and G. Magnusdottir, 2016: Extratropical impacts on Atlantic tropical cyclone activity. J. Atmos. Sci., 73, 14011418, doi:10.1175/JAS-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2392 1025 62
PDF Downloads 1689 479 36