Dust Storms in Northern China: Long-Term Spatiotemporal Characteristics and Climate Controls

Qingyu Guan Key Laboratory of Western China’s Environmental Systems, Ministry of Education, and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Qingyu Guan in
Current site
Google Scholar
PubMed
Close
,
Xiazhong Sun Key Laboratory of Western China’s Environmental Systems, Ministry of Education, and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Xiazhong Sun in
Current site
Google Scholar
PubMed
Close
,
Jing Yang Key Laboratory of Western China’s Environmental Systems, Ministry of Education, and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Jing Yang in
Current site
Google Scholar
PubMed
Close
,
Baotian Pan Key Laboratory of Western China’s Environmental Systems, Ministry of Education, and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Baotian Pan in
Current site
Google Scholar
PubMed
Close
,
Shilei Zhao Key Laboratory of Western China’s Environmental Systems, Ministry of Education, and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Shilei Zhao in
Current site
Google Scholar
PubMed
Close
, and
Lei Wang Key Laboratory of Western China’s Environmental Systems, Ministry of Education, and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Lei Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Airborne dust derived from desertification in northern China can be transported to East Asia and other regions, impairing human health and affecting the global climate. This study of northern China dust provides an understanding of the mechanism of dust generation and transportation. The authors used dust storm and climatological data from 129 sites and normalized difference vegetation index (NDVI) datasets in northern China to analyze spatiotemporal characteristics and determine the main factors controlling dust storms occurring during 1960–2007. Dust storm–prone areas are consistent with the spatial distribution of northern China deserts where the average wind speed (AWS) is more than 2 m s−1, the mean annual temperature (MAT) ranges from 5° to 10°C, and the mean annual precipitation (MAP) is less than 450 mm. Dust storms commonly occur on spring afternoons in a 3- to 6-h pattern. The three predominant factors that can affect DSF are the maximum wind speed, AWS, and MAT. During 1960–2007, dust storm frequency (DSF) in most regions of northern China fluctuated but had a decreasing trend; this was mainly caused by a gradual reduction in wind speed. The effect of temperature on DSF is complex, as positive and negative correlations exist simultaneously. Temperatures can affect source material (dust, sand, etc.), cyclone activity, and vegetation growth status, which influence the generation of dust storms. NDVI and precipitation are negatively correlated with DSF, but the effect is weak. Vegetation can protect the topsoil environment and prevent dust storm creation but is affected by the primary decisive influence of precipitation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qingyu Guan, guanqy@lzu.edu.cn

Abstract

Airborne dust derived from desertification in northern China can be transported to East Asia and other regions, impairing human health and affecting the global climate. This study of northern China dust provides an understanding of the mechanism of dust generation and transportation. The authors used dust storm and climatological data from 129 sites and normalized difference vegetation index (NDVI) datasets in northern China to analyze spatiotemporal characteristics and determine the main factors controlling dust storms occurring during 1960–2007. Dust storm–prone areas are consistent with the spatial distribution of northern China deserts where the average wind speed (AWS) is more than 2 m s−1, the mean annual temperature (MAT) ranges from 5° to 10°C, and the mean annual precipitation (MAP) is less than 450 mm. Dust storms commonly occur on spring afternoons in a 3- to 6-h pattern. The three predominant factors that can affect DSF are the maximum wind speed, AWS, and MAT. During 1960–2007, dust storm frequency (DSF) in most regions of northern China fluctuated but had a decreasing trend; this was mainly caused by a gradual reduction in wind speed. The effect of temperature on DSF is complex, as positive and negative correlations exist simultaneously. Temperatures can affect source material (dust, sand, etc.), cyclone activity, and vegetation growth status, which influence the generation of dust storms. NDVI and precipitation are negatively correlated with DSF, but the effect is weak. Vegetation can protect the topsoil environment and prevent dust storm creation but is affected by the primary decisive influence of precipitation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qingyu Guan, guanqy@lzu.edu.cn
Save
  • André, J. C., and L. Mahrt, 1982: The nocturnal surface inversion and influence of clear-air radiative cooling. J. Atmos. Sci., 39, 864878, doi:10.1175/1520-0469(1982)039<0864:TNSIAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antón, M., and Coauthors, 2012: Global and diffuse shortwave irradiance during a strong desert dust episode at Granada (Spain). Atmos. Res., 118, 232239, doi:10.1016/j.atmosres.2012.07.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlin, J., and Coauthors, 2013: Classification and regression tree (CART) analysis of endometrial carcinoma: Seeing the forest for the trees. Gynecol. Oncol., 130, 452456, doi:10.1016/j.ygyno.2013.06.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bar-Or, R., C. Erlick, and H. Gildor, 2008: The role of dust in glacial–interglacial cycles. Quat. Sci. Rev., 27, 201208, doi:10.1016/j.quascirev.2007.10.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bou Kheir, R., J. Wilson, and Y. Deng, 2007: Use of terrain variables for predictive gully erosion mapping in Lebanon. Earth Surf. Processes Landforms, 32, 17701782, doi:10.1002/esp.1501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bou Kheir, R., J. Chorowicz, C. Abdallah, and D. Dhont, 2008: Soil and bedrock distribution estimated from gully form and frequency: A GIS-based decision-tree model for Lebanon. Geomorphology, 93, 482492, doi:10.1016/j.geomorph.2007.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bou Kheir, R., M. H. Greve, C. Abdallah, and T. Dalgaard, 2010: Spatial soil zinc content distribution from terrain parameters: A GIS-based decision-tree model in Lebanon. Environ. Pollut., 158, 520528, doi:10.1016/j.envpol.2009.08.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Breiman, L., 2001: Decision-tree forests. Mach. Learn., 45, 532, doi:10.1023/A:1010933404324.

  • Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone, 1984: Classification and Regression Trees. Taylor and Francis, 368 pp.

  • Bryant, R. G., 2013: Recent advances in our understanding of dust source emission processes. Prog. Phys. Geogr., 37, 397421, doi:10.1177/0309133313479391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calov, R., A. Ganopolski, M. Claussen, V. Petoukhov, and R. Greve, 2005: Transient simulation of the last glacial inception. Part I: Glacial inception as a bifurcation in the climate system. Climate Dyn., 24, 545561, doi:10.1007/s00382-005-0007-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, W., J. Hu, and X. Yu, 2009: A study on temperature interpolation methods based on GIS. Proc. Int. Conf. on Geoinformatics, Fairfax, VA, IEEE, doi:10.1109/GEOINFORMATICS.2009.5293422.

    • Crossref
    • Export Citation
  • Central Meteorological Bureau, 1979: Standard on the Surface Meteorological Observation (in Chinese). China Meteorological Press, 186 pp.

  • Chen, K.-Y., and Z.-Q. Peng, 2012: Monitoring Mongolia Gobi dust transport using OMI data (in Chinese). Sci. Cold Arid Reg., 4, 446451, doi:10.3724/SP.J.1226.2012.00446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, Y.-S., H.-S. Kim, K.-H. Park, D. Jugder, and T. Gao, 2005: Observations of dust-storms in China, Mongolia and associated dust falls in Korea in spring 2003. Water Air Soil Pollut. Focus, 5, 1535, doi:10.1007/s11267-005-0724-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 11121128, doi:10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De’Ath, G., 2002: Multivariate regression trees: A new technique for modeling species–environment relationships. Ecology, 83, 11051117, doi:10.1890/0012-9658(2002)083[1105:MRTANT]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Degobbi, C., F. Lopes, R. Carvalho-Oliveira, J. Muñoz, and H. Saldiva, 2011: Correlation of fungi and endotoxin with PM2.5 and meteorological parameters in atmosphere of Sao Paulo Brazil. Atmos. Environ., 45, 22772283, doi:10.1016/j.atmosenv.2010.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R., J. Li, S. Wang, and F. Ren, 2005: Decadal change of the spring dust storm in northwest China and the associated atmospheric circulation. Geophys. Res. Lett., 32, L02808, doi:10.1029/2004GL021561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engelstaedter, S., I. Tegen, and R. Washington, 2006: North African dust emissions and transport. Earth-Sci. Rev., 79, 73100, doi:10.1016/j.earscirev.2006.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallon, C., M. A. Ranville, C. H. Conaway, W. M. Landing, C. S. Buck, P. L. Morton, and A. R. Flegal, 2011: Asian industrial lead inputs to the North Pacific evidenced by lead concentrations and isotopic compositions in surface waters and aerosols. Environ. Sci. Technol., 45, 98749882, doi:10.1021/es2020428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, T., J. Han, Y. Wang, H. Pei, and S. Lu, 2012: Impacts of climate abnormality on remarkable dust storm increase of the Hunshdak Sandy Lands in northern China during 2001–2008. Meteor. Appl., 19, 265278, doi:10.1002/met.251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García, J. H., W. W. Li, R. Arimoto, R. Okrasinski, J. Greenlee, J. Walton, C. Schloesslin, and S. Sage, 2004: Characterization and implication of potential fugitive dust sources in the Paso del Norte region. Sci. Total Environ., 325, 95112, doi:10.1016/j.scitotenv.2003.11.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., R. Mao, and Y.-D. Fan, 2006: East Asian dust storm and weather disturbance: Possible links to the Arctic Oscillation. Int. J. Climatol., 26, 13791396, doi:10.1002/joc.1324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goudie, A. S., 2009: Dust storms: Recent developments. J. Environ. Manage., 90, 8994, doi:10.1016/j.jenvman.2008.07.007.

  • Grousset, F. E., G. Paul, A. Bory, and P. E. Biscaye, 2003: Case study of a Chinese dust plume reaching the French Alps. Geophys. Res. Lett., 30, 1277, doi:10.1029/2002GL016833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, Q., J. Yang, S. Zhao, B. Pan, C. Liu, D. Zhang, and T. Wu, 2015: Climatological analysis of dust storms in the area surrounding the Tengger Desert during 1960–2007. Climate Dyn., 45, 903913, doi:10.1007/s00382-014-2321-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Y., X. Fang, T. Zhao, and S. Kang, 2008: Long range trans-Pacific transport and deposition of Asian dust aerosols. J. Environ. Sci., 20, 424428, doi:10.1016/S1001-0742(08)62074-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hara, Y., I. Uno, and Z. F. Wang, 2006: Long-term variation of Asian dust and related climate factors. Atmos. Environ., 40, 67306740, doi:10.1016/j.atmosenv.2006.05.080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, B. L., E. N. Bui, C. J. Moran, and D. A. P. Simon, 2005: Australia-wide predictions of soil properties using decision trees. Geoderma, 124, 383398, doi:10.1016/j.geoderma.2004.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., P. Minnis, H. Yan, Y. Yi, B. Chen, L. Zhang, and J. K. Ayers, 2010: Dust aerosol effect on semi-arid climate over northwest China detected from A-Train satellite measurements. Atmos. Chem. Phys., 10, 68636872, doi:10.5194/acp-10-6863-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., T. Wang, W. Wang, Z. Li, and H. Yan, 2014: Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res. Atmos., 119, 11 39811 416, doi:10.1002/2014JD021796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., H. Yu, X. Guan, G. Wang, and R. Guo, 2016: Accelerated dryland expansion under climate change. Nat. Climate Change, 6, 166171, doi:10.1038/nclimate2837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huebert, B. J., T. Bates, P. B. Russell, G. Shi, Y. J. Kim, K. Kawamura, G. Carmichael, and T. Nakajima, 2003: An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts. J. Geophys. Res., 108, 8633, doi:10.1029/2003JD003550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huo, Z., X. Dai, S. Feng, S. Kang, and G. Huang, 2013: Effect of climate change on reference evapotranspiration and aridity index in arid region of China. J. Hydrol., 492, 2434, doi:10.1016/j.jhydrol.2013.04.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayaratne, E. R., G. R. Johnson, P. McGarry, H. C. Cheung, and L. Morawska, 2011: Characteristics of airborne ultrafine and coarse particles during the Australian dust storm of 23 September 2009. Atmos. Environ., 45, 39964001, doi:10.1016/j.atmosenv.2011.04.059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kandrika, S., and P. S. Roy, 2008: Land use land cover classification of Orissa using multi-temporal IRS-P6 AWiFS data: A decision tree approach. Int. J. Appl. Earth Obs. Geoinf., 10, 186193, doi:10.1016/j.jag.2007.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, L., J. Huang, S. Chen, and X. Wang, 2016: Long-term trends of dust events over Tibetan Plateau during 1961–2010. Atmos. Environ., 125, 188198, doi:10.1016/j.atmosenv.2015.10.085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaskaoutis, D. G., A. Rashki, E. E. Houssos, A. Mofidi, D. Goto, A. Bartzokas, P. Francois, and M. Legrand, 2015: Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran. Climate Dyn., 45, 407424, doi:10.1007/s00382-014-2208-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H. S., and K. Kai, 2007: Recent dust outbreaks in the Taklimakan Desert and their relation to surface wind and land surface condition. SOLA, 3, 6972, doi:10.2151/sola.2007-018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kourgialas, N. N., and G. P. Karatzas, 2015: Groundwater contamination risk assessment in Crete, Greece, using numerical tools within a GIS framework. Hydrol. Sci. J., 60, 111132, doi:10.1080/02626667.2014.885653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krinner, G., O. Boucher, and Y. Balkanski, 2006: Ice-free glacial northern Asia due to dust deposition on snow. Climate Dyn., 27, 613625, doi:10.1007/s00382-006-0159-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurosaki, Y., and M. Mikami, 2003: Recent frequent dust events and their relation to surface wind in East Asia. Geophys. Res. Lett., 30, 1736, doi:10.1029/2003GL017261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., and P. M. Zhai, 2003: Variability in occurrence of China’s spring dust storm and its relationship with atmospheric general circulation (in Chinese). Acta Meteor. Sin., 17, 396405.

    • Search Google Scholar
    • Export Citation
  • Littmann, T., 1991: Dust storm frequency in Asia: Climatic control and variability. Int. J. Climatol., 11, 393412, doi:10.1002/joc.3370110405.

  • Liu, J., and J. Diamond, 2005: China’s environment in a globalizing world. Nature, 435, 11791186, doi:10.1038/4351179a.

  • Liu, Q., Y. Liu, J. Yin, M. Zhang, and T. Zhang, 2014: Chemical characteristics and source apportionment of PM10 during Asian dust storm and non-dust storm days in Beijing. Atmos. Environ., 91, 8594, doi:10.1016/j.atmosenv.2014.03.057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., Z.-Y. Yin, X. Zhang, and X. Yang, 2004: Analyses of the spring dust storm frequency of northern China in relation to antecedent and concurrent wind, precipitation, vegetation, and soil moisture conditions. J. Geophys. Res., 109, D16210, doi:10.1029/2004JD004615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Z., and C. H. Liu, 2006: On the relationship between sandstorm and meteorological factors in China (in Chinese). Meteor. Mon., 32, 3541.

    • Search Google Scholar
    • Export Citation
  • Luo, C., N. M. Mahowald, and J. D. Corral, 2003: Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution. J. Geophys. Res., 108, 4447, doi:10.1029/2003JD003483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahowald, N. M., and Coauthors, 2005: Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem. Cycles, 19, 10641067, GB4025, doi:10.1029/2004GB002402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKenzie, N. J., and P. J. Ryan, 1999: Spatial prediction of soil properties using environmental correlation. Geoderma, 89, 6794, doi:10.1016/S0016-7061(98)00137-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. L., I. Tegen, and J. Perlwitz, 2004: Surface radiative forcing by soil dust aerosols and the hydrologic cycle. J. Geophys. Res., 109, D04203, doi:10.1029/2003JD004085.

    • Search Google Scholar
    • Export Citation
  • Mukai, M., T. Nakajima, and T. Takemura, 2004: A study of long-term trends in mineral dust aerosol distributions in Asia using a general circulation model. J. Geophys. Res., 109, D19204, doi:10.1029/2003JD004270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myneni, R. B., C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani, 1997: Increased plant growth in the northern high latitudes from 1981 to 1999. Nature, 386, 698702, doi:10.1038/386698a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Natsagdorj, L., D. Jugdea, and Y. S. Chung, 2003: Analysis of dust storms observed in Mongolia during 1937–1999. Atmos. Environ., 37, 14011411, doi:10.1016/S1352-2310(02)01023-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nemani, R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running, 2003: Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 15601563, doi:10.1126/science.1082750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlovsky, L., N. Orlovsky, and A. Durdyev, 2005: Dust storms in Turkmenistan. J. Arid Environ., 60, 8397, doi:10.1016/j.jaridenv.2004.02.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, W., L. Quan, and S. Shi, 2002: Variations of the dust storm in China and its climatic control. J. Climate, 15, 12161229, doi:10.1175/1520-0442(2002)015<1216:VOTDSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, W., X. Tang, and L. Quan, 2004: Regional characteristics of dust storms in China. Atmos. Environ., 38, 48954907, doi:10.1016/j.atmosenv.2004.05.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, L., S. Shi, Y. Zhu, and W. Qian, 2001: Temporal–spatial distribution characteristics and causes of dust-day in China. Acta Geogr. Sin., 4, 477485, doi:10.11821/xb200104011.

    • Search Google Scholar
    • Export Citation
  • Pinzon, J., M. E. Brown, and C. J. Tucker, 2005: Satellite time series correction of orbital drift artifacts using empirical mode decomposition. Hilbert–Huang Transform: Introduction and Applications, N. Huang, Ed., World Scientific, 167–186.

    • Crossref
    • Export Citation
  • Ratnam, M. V., Y. D. Santhi, M. Rajeevan, and S. V. B. Rao, 2013: Diurnal variability of stability indices observed using radiosonde observations over a tropical station: Comparison with microwave radiometer measurements. Atmos. Res., 124, 2133, doi:10.1016/j.atmosres.2012.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schilling, C., D. Mortimer, K. Dalziel, E. Heeley, J. Chalmers, and P. Clarke, 2016: Using classification and regression trees (CART) to identify prescribing thresholds for cardiovascular disease. Pharmacol. Econ., 34, 195205, doi:10.1007/s40273-015-0342-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schröder, W., 2006: GIS, geostatistics, metadata banking, and tree-based models for data analysis and mapping in environmental monitoring and epidemiology. Int. J. Med. Microbiol., 296, 2336, doi:10.1016/j.ijmm.2006.02.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, Y., and C. H. Dong, 2006: A review on East Asian dust storm climate, modelling and monitoring. Global Planet. Change, 52, 122, doi:10.1016/j.gloplacha.2006.02.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, R., G. Anderson, and E. Andrews, 2005: Asian dust signature at Barrow: Observed and simulated incursions and impact of Asian dust over northern Alaska. Proc. Workshop on Remote Sensing of Atmospheric Aerosols, Tucson, AZ, IEEE, 74–79.

    • Crossref
    • Export Citation
  • Sun, J., M. Zhang, and T. Liu, 2001: Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate. J. Geophys. Res., 106, 10 32510 333, doi:10.1029/2000JD900665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, S.-C., G.-Y. Shi, and W. Hong, 2012: Long-range transport of spring dust storms in Inner Mongolia and impact on the China seas. Atmos. Environ., 46, 299308, doi:10.1016/j.atmosenv.2011.09.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, T. Y., and M. Chiba, 2006: A numerical study of the contributions of dust source regions to the global dust budget. Global Planet. Change, 52, 88104, doi:10.1016/j.gloplacha.2006.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Y., G. Han, Q. Wu, and Z. Xu, 2013: Use of rare earth element patterns to trace the provenance of the atmospheric dust near Beijing, China. Environ. Earth Sci., 68, 871879, doi:10.1007/s12665-012-1791-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, G., Zhang, X., and Wulan, 2010: A seasonal forecast scheme for spring dust storm predictions in northern China. Meteor. Appl., 17, 433441, doi:10.1002/met.175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toreti, A., F. Desiato, G. Fioravanti, and W. Perconti, 2010: Seasonal temperatures over Italy and their relationship with low-frequency atmospheric circulation patterns. Climatic Change, 99, 211227, doi:10.1007/s10584-009-9640-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., J. E. Pinzon, and M. E. Brown, 2004: Global Inventory Modeling and Mapping Studies, NA94apr15b.n11-VIg, version 2.0. University of Maryland Global Land Cover Facility, accessed 15 October 2016. [Available online at http://staff.glcf.umd.edu/sns/branch/htdocs.sns/data/gimms/.]

  • Tucker, C. J., J. E. Pinzon, M. E. Brown, D. Slayback, E. W. Pak, R. Mahoney, E. Vermote, and N. El Saleous, 2005: An extended AVHRR 8-km NDVI data set compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens., 26, 44855598, doi:10.1080/01431160500168686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valera, V. A., B. A. Walter, N. Yokoyama, Y. Koyama, T. Iiai, and H. Okamoto, 2007: Prognostic groups in colorectal carcinoma patients based on tumor cell proliferation and classification and regression tree (CART) survival analysis. Ann. Surg. Oncol., 14, 3440, doi:10.1245/s10434-006-9145-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., M. A. Saz-Sánchez, and J. M. Cuadrat, 2003: Comparative analysis of interpolation methods in the middle Ebro valley (Spain): Application to annual precipitation and temperature. Climate Res., 24, 161180, doi:10.3354/cr024161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walther, G. R., and Coauthors, 2002: Ecological responses to recent climate change. Nature, 416, 389395, doi:10.1038/416389a.

  • Wang, H., X. Jia, K. Li, and Y. Li, 2015: Horizontal wind erosion flux and potential dust emission in arid and semiarid regions of China: A major source area for East Asia dust storms. Catena, 133, 373384, doi:10.1016/j.catena.2015.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, N., 2005: Decrease trend of dust event frequency over the past 200 years recorded in the Malan ice core from the northern Tibetan Plateau. Chin. Sci. Bull., 50, 28662871, doi:10.1360/982005-237.

    • Search Google Scholar
    • Export Citation
  • Wang, S., J. Wang, Z. Zhou, and K. Shang, 2005: Regional characteristics of three kinds of dust storm events in China. Atmos. Environ., 39, 509520, doi:10.1016/j.atmosenv.2004.09.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T., 2000: Research on desertification and control to its calamity in the large-scale development of the western China (in Chinese). J. Desert Res., 20, 345348.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., G. Zhuang, Y. Sun, and Z. An, 2006: The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos. Environ., 40, 65796591, doi:10.1016/j.atmosenv.2006.05.066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y. F., Y. Shen, Y. Chen, and Y. Guo, 2013: Vegetation dynamics and their response to hydroclimatic factors in the Tarim River basin, China. Ecohydrology, 6, 927936, doi:10.1002/eco.1255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y. Q., A. F. Stein, R. R. Draxler, J. D. de la Rosa, and X. Zhang, 2011: Global sand and dust storms in 2008: Observation and HYSPLIT model verification. Atmos. Environ., 45, 63686381, doi:10.1016/j.atmosenv.2011.08.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. A., and J. D. Albertson, 2006: Dynamical effects of the statistical structure of annual rainfall on dryland vegetation. Global Change Biol., 12, 777792, doi:10.1111/j.1365-2486.2006.01111.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., J. K. Levy, Z. Lin, and C. Hong, 2006: An investigation of sand-dust storm events and land surface characteristics in China using NOAA NDVI data. Global Planet. Change, 52, 182196, doi:10.1016/j.gloplacha.2006.02.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y. Q., Q. Hou, C. H. Zhou, H. L. Liu, Y. Q. Wang, and T. Niu, 2008: Sand/dust storm processes in northeast Asia and associated large-scale circulations. Atmos. Chem. Phys., 8, 2533, doi:10.5194/acp-8-25-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y. Y., and Coauthors, 2014: Wind regime and sand transport in the corridor between the Badain Jaran and Tengger deserts, central Alxa Plateau. China. Aeolian Res., 12, 143156, doi:10.1016/j.aeolia.2013.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, R., J. Li, and H. Chen, 2009: Diurnal variation of surface wind over central eastern China. Climate Dyn., 33, 10891097, doi:10.1007/s00382-008-0478-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, W., and J. Zhang, 2006: High correlations between Asian dust events and biological productivity in the western North Pacific. Geophys. Res. Lett., 33, L07603, doi:10.1029/2005GL025174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. Y., W. J. Dong, and C. B. Fu, 2005: Impact of land surface degradation in northern China and southern Mongolia on regional climate. Chin. Sci. Bull., 50, 7581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., R. Arimoto, J. An, S. Yabuki, and J. Sun, 2005: Ground observations of a strong dust storm in Beijing in March 2002. J. Geophys. Res., 110, D18S06, doi:10.1029/2004JD004589.

    • Search Google Scholar
    • Export Citation
  • Zhang, X. Y., R. Arimoto, and Z. S. An, 1997: Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J. Geophys. Res., 102, 28 04128 047, doi:10.1029/97JD02300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X. Y., S. L. Gong, T. L. Zhao, R. Arimoto, Y. Q. Wang, and Z. J. Zhou, 2003: Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett., 30, 2272, doi:10.1029/2003GL018206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., H. J. Li, A. N. Huang, Q. He, W. Huo, and M. Z. Wang, 2013: Relationship between thermal anomalies in Tibetan Plateau and summer dust storm frequency over Tarim Basin, China. J. Arid Land, 5, 2531, doi:10.1007/s40333-013-0138-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., C. J. Tucker, R. K. Kaufmann, D. Slayback, N. V. Shabanov, and R. B. Myneni, 2001: Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res., 106, 20 06920 083, doi:10.1029/2000JD000115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, C., B. Wang, and W. Qian, 2008: Why do dust storms decrease in northern China concurrently with the recent global warming. Geophys. Res. Lett., 35, L18702, doi:10.1029/2008GL034886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, X. K., and P. M. Zhai, 2004: Relationship between vegetation coverage and spring dust storms over northern China. J. Geophys. Res., 109, D03104, doi:10.1029/2003JD003913.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2748 552 54
PDF Downloads 1757 446 39