Archetypal Analysis: Mining Weather and Climate Extremes

A. Hannachi Department of Meteorology, Stockholm University, Stockholm, Sweden

Search for other papers by A. Hannachi in
Current site
Google Scholar
PubMed
Close
and
N. Trendafilov Department of Mathematics and Statistics, The Open University, Milton Keynes, United Kingdom

Search for other papers by N. Trendafilov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Conventional analysis methods in weather and climate science (e.g., EOF analysis) exhibit a number of drawbacks including scaling and mixing. These methods focus mostly on the bulk of the probability distribution of the system in state space and overlook its tail. This paper explores a different method, the archetypal analysis (AA), which focuses precisely on the extremes. AA seeks to approximate the convex hull of the data in state space by finding “corners” that represent “pure” types or archetypes through computing mixture weight matrices. The method is quite new in climate science, although it has been around for about two decades in pattern recognition. It encompasses, in particular, the virtues of EOFs and clustering. The method is presented along with a new manifold-based optimization algorithm that optimizes for the weights simultaneously, unlike the conventional multistep algorithm based on the alternating constrained least squares. The paper discusses the numerical solution and then applies it to the monthly sea surface temperature (SST) from HadISST and to the Asian summer monsoon (ASM) using sea level pressure (SLP) from ERA-40 over the Asian monsoon region. The application to SST reveals, in particular, three archetypes, namely, El Niño, La Niña, and a third pattern representing the western boundary currents. The latter archetype shows a particular trend in the last few decades. The application to the ASM SLP anomalies yields archetypes that are consistent with the ASM regimes found in the literature. Merits and weaknesses of the method along with possible future development are also discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0798.s1.

Corresponding author: A. Hannachi, a.hannachi@misu.su.se

Abstract

Conventional analysis methods in weather and climate science (e.g., EOF analysis) exhibit a number of drawbacks including scaling and mixing. These methods focus mostly on the bulk of the probability distribution of the system in state space and overlook its tail. This paper explores a different method, the archetypal analysis (AA), which focuses precisely on the extremes. AA seeks to approximate the convex hull of the data in state space by finding “corners” that represent “pure” types or archetypes through computing mixture weight matrices. The method is quite new in climate science, although it has been around for about two decades in pattern recognition. It encompasses, in particular, the virtues of EOFs and clustering. The method is presented along with a new manifold-based optimization algorithm that optimizes for the weights simultaneously, unlike the conventional multistep algorithm based on the alternating constrained least squares. The paper discusses the numerical solution and then applies it to the monthly sea surface temperature (SST) from HadISST and to the Asian summer monsoon (ASM) using sea level pressure (SLP) from ERA-40 over the Asian monsoon region. The application to SST reveals, in particular, three archetypes, namely, El Niño, La Niña, and a third pattern representing the western boundary currents. The latter archetype shows a particular trend in the last few decades. The application to the ASM SLP anomalies yields archetypes that are consistent with the ASM regimes found in the literature. Merits and weaknesses of the method along with possible future development are also discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0798.s1.

Corresponding author: A. Hannachi, a.hannachi@misu.su.se

Supplementary Materials

    • Supplemental Materials (PDF 283.43 KB)
Save
  • Absil, P.-A., R. Mahony, and R. Sepulchre, 2010: Optimization on manifolds: Methods and applications. Recent Advances in Optimization and Its Applications in Engineering, M. Diehl, F. Glineur, and E. J. W. Michiels, Eds., Springer, 125–144.

    • Crossref
    • Export Citation
  • Akaike, H., 1973: Information theory and an extension of the maximum likelihood principle. Proc. Second Int. Symp. on Information Theory, Budapest, Hungary, Akademiai Kiado, 267–281.

  • Akaike, H., 1974: A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716723, doi:10.1109/TAC.1974.1100705.

  • Akaike, H., 1978: Time series analysis and control through parametric models. Applied Time Series Analysis, D. F. Findley, Ed., Academic Press, 1–23.

    • Crossref
    • Export Citation
  • Ambaum, M. H. P., B. J. Hoskins, and D. B. Stephenson, 2001: Arctic Oscillation or North Atlantic Oscillation. J. Climate, 14, 34953507, doi:10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barber, C. B., D. P. Dobkin, and H. Huhdanpaa, 1996: The quickhull algorithm for convex hulls. ACM Trans. Math. Software, 22, 469483, doi:10.1145/235815.235821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauckhage, C., and C. Thurau, 2009: Making archetypal analysis practical. Pattern Recognition, J. Denzler, G. Notni, and H. Süße, Eds., Lecture Notes in Computer Science, Vol. 5748, Springer, 272–281.

  • Boumal, N., B. Mishra, P.-A. Absil, and R. Sepulchre, 2014: Manopt: A toolbox for optimization on manifolds. J. Mach. Learn. Res., 15, 14551459.

    • Search Google Scholar
    • Export Citation
  • Chan, B. H. P., D. A. Mitchell, and L. E. Cram, 2003: Archetypal analysis of galaxy spectra. Mon. Not. Roy. Astron. Soc., 36, 338347, doi:10.1046/j.1365-8711.2003.06099.x.

    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2003: Evidence for nonlinear climate change: Two stratospheric regimes and a regime shift. J. Climate, 16, 36813690, doi:10.1175/1520-0442(2003)016<3681:EFNCCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2007: Atmospheric circulation regimes: Can cluster analysis provide the number? J. Climate, 20, 22292250, doi:10.1175/JCLI4107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coexeter, H. S. M., 1973: Regular Polytopes. Dover Publications, 339 pp.

  • Cutler, A., and L. Breiman, 1994: Archetypal analysis. Technometrics, 36, 338347, doi:10.1080/00401706.1994.10485840.

  • Dommenget, D., and M. Latif, 2003: Reply. J. Climate, 16, 10941097, doi:10.1175/1520-0442(2003)016<1094:R>2.0.CO;2.

  • Hannachi, A., 2007: Pattern hunting in climate: A new method for finding trends in gridded climate data. Int. J. Climatol., 27, 115, doi:10.1002/joc.1375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., 2010: On the origin of planetary-scale extratropical winter circulation regimes. J. Atmos. Sci., 67, 13821401, doi:10.1175/2009JAS3296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., 2016: Regularised empirical orthogonal functions. Tellus, 68A, 31723, doi:10.3402/tellusa.v68.31723.

  • Hannachi, A., and A. G. Turner, 2013: 20th century intraseasonal Asian summer monsoon dynamics viewed viewed from isomap. Nonlinear Processes Geophys., 20, 725741, doi:10.5194/npg-20-725-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., I. T. Jolliffe, D. B. Stephenson, and N. Trendafilov, 2006: In search of simple structures in climate: Simplifying EOFs. Int. J. Climatol., 26, 728, doi:10.1002/joc.1243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., I. T. Jolliffe, and D. B. Stephenson, 2007: Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol., 27, 11191152, doi:10.1002/joc.1499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., D. M. Straus, C. L. E. Franzke, S. Corti, and T. Woollings, 2017: Low-frequency nonlinearity and regime behavior in the Northern Hemisphere extratropical atmosphere. Rev. Geophys., 55, 199234, doi:10.1002/2015RG000509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., 2002: Principal Component Analysis. 2nd ed. Springer, 487 pp.

  • Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. MIT Dept. of Meteorology Tech. Rep., 49 pp.

  • Mestas-Nuñez, A. M., 2000: Orthogonality properties of rotated empirical modes. Int. J. Climatol., 20, 15091516, doi:10.1002/1097-0088(200010)20:12<1509::AID-JOC553>3.0.CO;2-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., J. C. Fyfe, M. H. P. Ambaum, D. B. Stephenson, and G. R. North, 2009: Empirical orthogonal functions: The medium is the message. J. Climate, 22, 65016514, doi:10.1175/2009JCLI3062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morup, M., and L. K. Hansen, 2012: Archetypal analysis for machine learning and data mining. Neurocomputing, 80, 5463, doi:10.1016/j.neucom.2011.06.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1950: On the wind-driven ocean circulation. J. Meteor., 7, 8093, doi:10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Obukov, A. M., 1947: Statistically homogeneous fields on a sphere. Usp. Mat. Nauk, 2, 196198.

  • Porzio, G. C., G. Ragozini, and D. Vistocco, 2008: On the use of archetypes as benchmarks. Appl. Stochastic Models Data Anal., 24, 419437, doi:10.1002/asmb.727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsay, J. O., and B. W. Silverman, 2006: Functional Data Analysis. 2nd ed. Springer, 426 pp.

    • Crossref
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., and M. Ghil, 1999: Large-scale weather regimes and local climate over the western United States. J. Climate, 12, 17961813, doi:10.1175/1520-0442(1999)012<1796:LSWRAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarz, G., 1978: Estimating the dimension of a model. Ann. Stat., 6, 461464, doi:10.1214/aos/1176344136.

  • Seager, R., and I. R. Simpson, 2016: Western boundary currents and climate change. J. Geophys. Res. Oceans, 121, 72127214, doi:10.1002/2016JC012156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seth, S., and M. Eugster, 2016: Probabilistic archetypal analysis. Mach. Learn., 102, 85113, doi:10.1007/s10994-015-5498-8.

  • Smith, S. T., 1994: Optimization techniques on Riemannian manifolds. Hamiltonian and Gradient Flows, Algorithm and Control, A. Bloch, Ed., Field Institute Communications, Vol. 3, American Mathematical Society, 113–136.

    • Crossref
    • Export Citation
  • Steinschneider, S., and U. Lall, 2015: Daily precipitation and tropical moisture exports across the eastern United States: An application of archetypal analysis to identify spatiotemporal structure. J. Climate, 28, 85858602, doi:10.1175/JCLI-D-15-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1948: The westward intensification of wind-driven ocean currents. Eos, Trans. Amer. Geophys. Union, 29, 202206, doi:10.1029/TR029i002p00202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sura, P., 2011: A general perspective of extreme events in weather and climate. Atmos. Res., 101, 121, doi:10.1016/j.atmosres.2011.01.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sura, P., and A. Hannachi, 2015: Perspectives of non-Gaussianity in atmospheric synoptic and low-frequency variability. J. Climate, 28, 50915114, doi:10.1175/JCLI-D-14-00572.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., H. Qiao, B. Zhang, and M. Wang, 2013: Online support vector machine based on convex hull vertices selection. IEEE Trans. Neural Networks Learn. Syst., 24, 593609, doi:10.1109/TNNLS.2013.2238556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2006: Statistical Methods in the Atmospheric Sciences. Academic Press, 676 pp.

  • Yang, H., G. Lohmann, W. Wei, M. Dima, M. Ionita, and J. Liu, 2016: Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. Oceans, 121, 49284945, doi:10.1002/2015JC011513.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1065 441 49
PDF Downloads 673 140 28