• Adams, J. M., and H. Faure, 1997: Review and atlas of palaeovegetation: Preliminary land ecosystem maps of the world since the Last Glacial Maximum. Oak Ridge National Laboratory, accessed 31 May 2016. [Available online at http://www.esd.ornl.gov/projects/gen/.]

  • Albani, S., and Coauthors, 2016: Paleodust variability since the Last Glacial Maximum and implications for iron inputs to the ocean. Geophys. Res. Lett., 43, 39443954, doi:10.1002/2016GL067911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. Food and Agriculture Organization Irrigation and Drainage Paper 56, 328 pp.

  • Anderegg, W. R. L., J. A. Berry, D. D. Smith, J. S. Sperry, L. D. L. Anderegg, and C. B. Field, 2012: The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc. Natl. Acad. Sci. USA, 109, 233237, doi:10.1073/pnas.1107891109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnell, N., and Coauthors, 2001: Hydrology and water resources. Climate Change 2001: Impacts, Adaptation and Vulnerability, J. J. McCarthy et al., Eds., Cambridge University Press, 191–233.

  • Arora, V. K., and Coauthors, 2013: Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models. J. Climate, 26, 52895314, doi:10.1175/JCLI-D-12-00494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A., and Coauthors, 2016: Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Climate Change, 6, 869874, doi:10.1038/nclimate3029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigelow, N. H., and Coauthors, 2003: Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the Last Glacial Maximum, mid-Holocene, and present. J. Geophys. Res., 108, 8170, doi:10.1029/2002JD002558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G., 2008: Ecological Climatology: Concepts and Applications. 2nd ed. Cambridge University Press, 550 pp.

    • Crossref
    • Export Citation
  • Boucot, A. J., C. Xu, C. R. Scotese, and R. J. Morley, 2013: Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate. SEPM Concepts in Sedimentology and Paleontology, Vol. 11, Society for Sedimentary Geology, 478 pp.

    • Crossref
    • Export Citation
  • Braconnot, P., S. P. Harrison, M. Kageyama, P. J. Bartlein, V. Masson-Delmotte, A. Abe-Ouchi, B. Otto-Bliesner, and Y. Zhao, 2012: Evaluation of climate models using palaeoclimatic data. Nat. Climate Change, 2, 417424, doi:10.1038/nclimate1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bragg, F. J., I. C. Prentice, S. P. Harrison, G. Eglinton, P. N. Foster, F. Rommerskirchen, and J. Rullkötter, 2013: Stable isotope and modelling evidence for CO2 as a driver of glacial–interglacial vegetation shifts in southern Africa. Biogeosciences, 10, 20012010, doi:10.5194/bg-10-2001-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W., 2010: Long-term water prospects in the western United States. J. Climate, 23, 66696683, doi:10.1175/2010JCLI3780.1.

  • Byrne, M. P., and P. A. O’Gorman, 2015: The response of precipitation minus evapotranspiration to climate warming: Why the “wet-get-wetter, dry-get-drier” scaling does not hold over land. J. Climate, 28, 80788092, doi:10.1175/JCLI-D-15-0369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2016: Understanding decreases in land relative humidity with global warming: Conceptual model and GCM simulations. J. Climate, 29, 90459061, doi:10.1175/JCLI-D-16-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al, Eds., Cambridge University Press, 1029–1136. [Available online at http://www.climatechange2013.org/images/report/WG1AR5_Chapter12_FINAL.pdf.]

  • Cook, B. I., J. E. Smerdon, R. Seager, and S. Coats, 2014: Global warming and 21st century drying. Climate Dyn., 43, 26072627, doi:10.1007/s00382-014-2075-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, doi:10.1038/nclimate1633.

  • De Kauwe, M. G., and Coauthors, 2013: Forest water use and water use efficiency at elevated CO2: A model–data intercomparison at two contrasting temperate forest FACE sites. Global Change Biol., 19, 17591779, doi:10.1111/gcb.12164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohue, R. J., M. L. Roderick, T. R. McVicar, and G. D. Farquhar, 2013: Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett., 40, 30313035, doi:10.1002/grl.50563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elenga, H., and Coauthors, 2000: Pollen-based biome reconstruction for southern Europe and Africa 18,000 yr BP. J. Biogeogr., 27, 621634, doi:10.1046/j.1365-2699.2000.00430.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feakins, S. J., and P. B. deMenocal, 2010: Global and African regional climate during the Cenozoic. Cenozoic Mammals of Africa, L. Werdelin and W. J. Sanders, Eds., University of California Press, 45–55.

    • Crossref
    • Export Citation
  • Feng, S., and Q. Fu, 2013: Expansion of global drylands under a warming climate. Atmos. Chem. Phys., 13, 10 08110 094, doi:10.5194/acp-13-10081-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frakes, L. A., J. E. Francis, and J. I. Syktus, 1992: Climate Modes of the Phanerozoic. Cambridge University Press, 288 pp.

    • Crossref
    • Export Citation
  • Fu, Q., and S. Feng, 2014: Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos., 119, 78637875, doi:10.1002/2014JD021608.

  • Fu, Q., L. Lin, J. Huang, S. Feng, and A. Gettelman, 2016: Changes in terrestrial aridity for the period 850–2080 from the Community Earth System Model. J. Geophys. Res. Oceans, 121, 28572873, doi:10.1002/jgrc.21405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasse, F., and E. Van Campo, 1998: A 40,000-yr pollen and diatom record from Lake Tritrivakely, Madagascar, in the southern tropics. Quat. Res., 49, 299311, doi:10.1006/qres.1998.1967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerhart, L. M., and J. K. Ward, 2010: Plant responses to low [CO2] of the past. New Phytol., 188, 674695, doi:10.1111/j.1469-8137.2010.03441.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greve, P., and S. I. Seneviratne, 2015: Assessment of future changes in water availability and aridity. Geophys. Res. Lett., 42, 54935499, doi:10.1002/2015GL064127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greve, P., B. Orlowsky, B. Mueller, J. Sheffield, M. Reichstein, and S. I. Seneviratne, 2014: Global assessment of trends in wetting and drying over land. Nat. Geosci., 7, 716721, doi:10.1038/ngeo2247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, S. P., and P. J. Bartlein, 2012: Records from the past, lessons for the future: What the palaeo-record implies about mechanisms of global change. The Future of the World’s Climate, A. Henderson-Sellers and K. McGuffie, Eds., Elsevier, 403–436.

    • Crossref
    • Export Citation
  • Harrison, S. P., G. Yu, H. Takahara, and I. C. Prentice, 2001: Palaeovegetation (communications arising): Diversity of temperate plants in East Asia. Nature, 413, 129130, doi:10.1038/35093166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663–745. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter9.pdf.]

  • Held, I., and B. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

  • Hopcroft, P. O., P. J. Valdes, S. Woodward, and M. M. Joshi, 2015: Last Glacial Maximum radiative forcing from mineral dust aerosols in an Earth system model. J. Geophys. Res. Atmos., 120, 81868205, doi:10.1002/2015JD023742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolly, D., and Coauthors, 1998: Biome reconstruction from pollen and plant macrofossil data for Africa and the Arabian Peninsula at 0 and 6000 years. J. Biogeogr., 25, 10071027, doi:10.1046/j.1365-2699.1998.00238.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J. O., and Coauthors, 2003: Climate change and Arctic ecosystems: 2. Modeling, paleodata–model comparisons, and future projections. J. Geophys. Res., 108, 8171, doi:10.1029/2002JD002559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchant, R., and Coauthors, 2009: Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago. Climate Past, 5, 725767, doi:10.5194/cp-5-725-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson-Delmotte, V., and Coauthors, 2013: Information from paleoclimate archives. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 383–464. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter05_FINAL.pdf.]

  • McGee, D., W. S. Broecker, and G. Winckler, 2010: Gustiness: The driver of glacial dustiness? Quat. Sci. Rev., 29, 23402350, doi:10.1016/j.quascirev.2010.06.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Middleton, N., and D. S. G. Thomas, 1997: World Atlas of Desertification. 2nd ed. Wiley, 182 pp.

  • Milly, P. C. D., and K. A. Dunne, 2016: Potential evapotranspiration and continental drying. Nat. Climate Change, 6, 946949, doi:10.1038/nclimate3046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muhs, D. R., 2013: The geologic records of dust in the Quaternary. Aeolian Res., 9, 348, doi:10.1016/j.aeolia.2012.08.001.

  • Pendergrass, A. G., and D. L. Hartmann, 2014: The atmospheric energy constraint on global-mean precipitation change. J. Climate, 27, 757768, doi:10.1175/JCLI-D-13-00163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petit, J. R., and Coauthors, 1999: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429436, doi:10.1038/20859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peyron, O., J. Guiot, R. Cheddadi, P. Tarasov, M. Reille, J.-L. de Beaulieu, S. Bottema, and V. Andrieu, 1998: Climatic reconstruction in Europe for 18,000 yr B.P. from pollen data. Quat. Res., 49, 183196, doi:10.1006/qres.1997.1961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickett, E. J., and Coauthors, 2004: Pollen-based reconstructions of biome distributions for Australia, Southeast Asia and the Pacific (SEAPAC region) at 0, 6000 and 18,000 14C yr BP. J. Biogeogr., 31, 13811444, doi:10.1111/j.1365-2699.2004.01001.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prentice, I. C., and S. P. Harrison, 2009: Ecosystem effects of CO2 concentration: Evidence from past climates. Climate Past, 5, 297307, doi:10.5194/cp-5-297-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prentice, I. C., J. Guiot, and S. P. Harrison, 1992: Mediterranean vegetation, lake levels, and palaeoclimate at the Last Glacial Maximum. Nature, 360, 658660, doi:10.1038/360658a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prentice, I. C., J. Guiot, B. Huntley, D. Jolly, and R. Cheddadi, 1996: Reconstructing biomes from palaeoecological data: A general method and its application to European pollen data at 0 and 6 ka. Climate Dyn., 12, 185194, doi:10.1007/BF00211617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prentice, I. C., and Coauthors, 2000: Mid-Holocene and Glacial-Maximum vegetation geography of the northern continents and Africa. J. Biogeogr., 27, 507519, doi:10.1046/j.1365-2699.2000.00425.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prentice, I. C., S. P. Harrison, and P. J. Bartlein, 2011: Global vegetation and terrestrial carbon cycle changes after the last ice age. New Phytol., 189, 988998, doi:10.1111/j.1469-8137.2010.03620.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., F. Sun, W. H. Lim, and G. D. Farquhar, 2014: A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrol. Earth Syst. Sci., 18, 15751589, doi:10.5194/hess-18-1575-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., P. Greve, and G. D. Farquhar, 2015: On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res., 51, 54505463, doi:10.1002/2015WR017031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., 2014: Understanding the responses of precipitation, evaporative demand, and terrestrial water availability to planetary temperature in climate models. Ph.D. thesis, University of Washington, 199 pp. [Available online at http://hdl.handle.net/1773/26158.]

  • Scheff, J., and D. M. W. Frierson, 2014: Scaling potential evapotranspiration with greenhouse warming. J. Climate, 27, 15391558, doi:10.1175/JCLI-D-13-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. M. W. Frierson, 2015: Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. J. Climate, 28, 55835600, doi:10.1175/JCLI-D-14-00480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, doi:10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P., and Coauthors, 1996: Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science, 271, 14021406, doi:10.1126/science.271.5254.1402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, P., X. Zeng, K. Sakaguchi, R. K. Monson, and X. Zeng, 2013: Terrestrial carbon cycle: Climate relations in eight CMIP5 Earth system models. J. Climate, 26, 87448764, doi:10.1175/JCLI-D-12-00831.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S., and Q. Fu, 2014: A drier future? Science, 343, 737739, doi:10.1126/science.1247620.

  • Sloan, L. C., J. C. G. Walker, T. C. Moore, D. K. Rea, and J. C. Zachos, 1992: Possible methane-induced polar warming in the early Eocene. Nature, 357, 320322, doi:10.1038/357320a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Y. Hu, 2010: Are climate-related changes to the character of global-mean precipitation predictable? Environ. Res. Lett., 5, 025209, doi:10.1088/1748-9326/5/2/025209.

    • Crossref
    • Export Citation
  • Swann, A. L. S., F. M. Hoffman, C. D. Koven, and J. T. Randerson, 2016: Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl. Acad. Sci. USA, 113, 10 01910 024, doi:10.1073/pnas.1604581113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahara, H., S. Sugita, S. P. Harrison, N. Miyoshi, Y. Morita, and T. Uchiyama, 2000: Pollen-based reconstructions of Japanese biomes at 0, 6000 and 18,000 14C yr BP. J. Biogeogr., 27, 665683, doi:10.1046/j.1365-2699.2000.00432.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarasov, P. E., and Coauthors, 1998: Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. J. Biogeogr., 25, 10291053, doi:10.1046/j.1365-2699.1998.00236.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarasov, P. E., and Coauthors, 2000: Last Glacial Maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia. J. Biogeogr., 27, 609620, doi:10.1046/j.1365-2699.2000.00429.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, D. M., 1990: Late Quaternary pollen records from two Ugandan mires: Evidence for environmental change in the Rukiga Highlands of southwest Uganda. Palaeogeogr. Palaeoclimatol. Palaeoecol., 80, 283300, doi:10.1016/0031-0182(90)90138-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. S., and K. H. Anderson, 2000: Biomes of western North America at 18,000, 6000 and 0 14C yr BP reconstructed from pollen and packrat midden data. J. Biogeogr., 27, 555584, doi:10.1046/j.1365-2699.2000.00427.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ullman, D. J., A. N. LeGrande, A. E. Carlson, F. S. Anslow, and J. M. Licciardi, 2014: Assessing the impact of Laurentide ice sheet topography on glacial climate. Climate Past, 10, 487507, doi:10.5194/cp-10-487-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valipour, M., M. A. G. Sefidkouhi, and M. Raeini-Sarjaz, 2017: Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agric. Water Manage., 180, 5060, doi:10.1016/j.agwat.2016.08.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, J. W., T. Webb, P. H. Richard, and P. Newby, 2000: Late Quaternary biomes of Canada and the eastern United States. J. Biogeogr., 27, 585607, doi:10.1046/j.1365-2699.2000.00428.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, M., 2014: Climate Change in Deserts: Past, Present and Future. Cambridge University Press, 629 pp.

    • Crossref
    • Export Citation
  • Yu, G., I. C. Prentice, S. P. Harrison, and X. Sun, 1998: Pollen-based biome reconstructions for China at 0 and 6000 years. J. Biogeogr., 25, 10551069, doi:10.1046/j.1365-2699.1998.00237.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, G., and Coauthors, 2000: Palaeovegetation of China: A pollen data-based synthesis for the mid-Holocene and Last Glacial Maximum. J. Biogeogr., 27, 635664, doi:10.1046/j.1365-2699.2000.00431.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., and A. Dai, 2015: The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. J. Climate, 28, 44904512, doi:10.1175/JCLI-D-14-00363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., and A. Dai, 2017: Uncertainties in historical changes and future projections of drought. Part II: Model-simulated historical and future drought changes. Climatic Change, doi:10.1007/s10584-016-1742-x, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 164 164 38
PDF Downloads 122 122 35

Are Glacials Dry? Consequences for Paleoclimatology and for Greenhouse Warming

View More View Less
  • 1 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
  • 2 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Past cold climates are often thought to have been drier than today on land, which appears to conflict with certain recent studies projecting widespread terrestrial drying with near-future warming. However, other work has found that, over large portions of the continents, the conclusion of future drying versus wetting strongly depends on the physical property of interest. Here, it is shown that this also holds in simulations of the Last Glacial Maximum (LGM): the continents have generally wetter topsoils and higher values of common climate wetness metrics than in the preindustrial, as well as generally lower precipitation and ubiquitously lower photosynthesis (likely driven by the low CO2), with streamflow responses falling in between. Using a large existing global pollen and plant fossil compilation, it is also confirmed that LGM grasslands and open woodlands grew at many sites of present-day forest, seasonal forests at many sites of present-day rain forest, and so forth (116–144 sites out of 302), while changes in the opposite sense were very few (9–17 sites out of 302) and spatially confined. These vegetation changes resemble the model photosynthesis responses but not the hydroclimate responses, while published lake-level changes resemble the latter but not the former. Thus, confidence in both the model hydrologic and photosynthesis projections is increased, and there is no significant conflict. Instead, paleo- and modern climate researchers must carefully define “wetting” and “drying” and, in particular, should not assume hydrologic drying on the basis of vegetation decline alone or assume vegetation stress on the basis of declines in hydroclimatic indicators.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0854.s1.

Corresponding author: Jacob Scheff, jscheff@uncc.edu

Abstract

Past cold climates are often thought to have been drier than today on land, which appears to conflict with certain recent studies projecting widespread terrestrial drying with near-future warming. However, other work has found that, over large portions of the continents, the conclusion of future drying versus wetting strongly depends on the physical property of interest. Here, it is shown that this also holds in simulations of the Last Glacial Maximum (LGM): the continents have generally wetter topsoils and higher values of common climate wetness metrics than in the preindustrial, as well as generally lower precipitation and ubiquitously lower photosynthesis (likely driven by the low CO2), with streamflow responses falling in between. Using a large existing global pollen and plant fossil compilation, it is also confirmed that LGM grasslands and open woodlands grew at many sites of present-day forest, seasonal forests at many sites of present-day rain forest, and so forth (116–144 sites out of 302), while changes in the opposite sense were very few (9–17 sites out of 302) and spatially confined. These vegetation changes resemble the model photosynthesis responses but not the hydroclimate responses, while published lake-level changes resemble the latter but not the former. Thus, confidence in both the model hydrologic and photosynthesis projections is increased, and there is no significant conflict. Instead, paleo- and modern climate researchers must carefully define “wetting” and “drying” and, in particular, should not assume hydrologic drying on the basis of vegetation decline alone or assume vegetation stress on the basis of declines in hydroclimatic indicators.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0854.s1.

Corresponding author: Jacob Scheff, jscheff@uncc.edu

Supplementary Materials

    • Supplemental Materials (PDF 166.47 KB)
Save