Causes of ENSO Weakening during the Mid-Holocene

Zhiping Tian Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, and International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Zhiping Tian in
Current site
Google Scholar
PubMed
Close
,
Tim Li International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and International Laboratory on Climate and Environment Change and Key Laboratory of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Tim Li in
Current site
Google Scholar
PubMed
Close
,
Dabang Jiang Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, International Laboratory on Climate and Environment Change and Key Laboratory of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing, CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, and Joint Laboratory for Climate and Environmental Change at Chengdu University of Information Technology, Chengdu, China

Search for other papers by Dabang Jiang in
Current site
Google Scholar
PubMed
Close
, and
Lin Chen Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, and International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Lin Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The causes of the change in amplitude of El Niño–Southern Oscillation (ENSO) during the mid-Holocene were investigated by diagnosing the model simulations that participated in the Paleoclimate Modelling Intercomparison Project phases 2 and 3. Consistent with paleoclimate records, 20 out of the 28 models reproduced weaker-than-preindustrial ENSO amplitude during the mid-Holocene. Two representative models were then selected to explore the underlying mechanisms of air–sea feedback processes. A mixed layer heat budget diagnosis indicated that the weakened ENSO amplitude was primarily attributed to the decrease in the Bjerknes thermocline feedback, while the meridional advective feedback also played a role. During the mid-Holocene, the thermocline response to a unit anomalous zonal wind stress forcing in the equatorial Pacific weakened in both models because of the increased ENSO meridional scale. A further investigation revealed that the greater ENSO meridional width was caused by the strengthening of the Pacific subtropical cell, which was attributed to the enhanced mean trade wind that resulted from the intensified Asian and African monsoon rainfall and associated large-scale east–west circulation in response to the mid-Holocene orbital forcing.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0899.s1.

Corresponding author: Zhiping Tian, tianzhiping@mail.iap.ac.cn

Abstract

The causes of the change in amplitude of El Niño–Southern Oscillation (ENSO) during the mid-Holocene were investigated by diagnosing the model simulations that participated in the Paleoclimate Modelling Intercomparison Project phases 2 and 3. Consistent with paleoclimate records, 20 out of the 28 models reproduced weaker-than-preindustrial ENSO amplitude during the mid-Holocene. Two representative models were then selected to explore the underlying mechanisms of air–sea feedback processes. A mixed layer heat budget diagnosis indicated that the weakened ENSO amplitude was primarily attributed to the decrease in the Bjerknes thermocline feedback, while the meridional advective feedback also played a role. During the mid-Holocene, the thermocline response to a unit anomalous zonal wind stress forcing in the equatorial Pacific weakened in both models because of the increased ENSO meridional scale. A further investigation revealed that the greater ENSO meridional width was caused by the strengthening of the Pacific subtropical cell, which was attributed to the enhanced mean trade wind that resulted from the intensified Asian and African monsoon rainfall and associated large-scale east–west circulation in response to the mid-Holocene orbital forcing.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0899.s1.

Corresponding author: Zhiping Tian, tianzhiping@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (DOCX 3.91 MB)
Save
  • An, S.-I., and F.-F. Jin, 2001: Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Climate, 14, 34213432, doi:10.1175/1520-0442(2001)014<3421:CROTAZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., and J. Choi, 2014: Mid-Holocene tropical Pacific climate state, annual cycle, and ENSO in PMIP2 and PMIP3. Climate Dyn., 43, 957970, doi:10.1007/s00382-013-1880-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrus, C. F. T., D. E. Crowe, D. H. Sandweiss, E. J. Reitz, and C. S. Romanek, 2002: Otolith δ18O record of mid-Holocene sea surface temperatures in Peru. Science, 295, 15081511, doi:10.1126/science.1062004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 16871712, doi:10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berger, A. L., 1978: Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci., 35, 23622367, doi:10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and Coauthors, 2007: Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Climate Past, 3, 261277, doi:10.5194/cp-3-261-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., S. P. Harrison, M. Kageyama, P. J. Bartlein, V. Masson-Delmotte, A. Abe-Ouchi, B. Otto-Bliesner, and Y. Zhao, 2012a: Evaluation of climate models using palaeoclimatic data. Nat. Climate Change, 2, 417424, doi:10.1038/nclimate1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., Y. Luan, S. Brewer, and W. Zheng, 2012b: Impact of Earth’s orbit and freshwater fluxes on Holocene climate mean seasonal cycle and ENSO characteristics. Climate Dyn., 38, 10811092, doi:10.1007/s00382-011-1029-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J., M. Collins, A. W. Tudhope, and T. Toniazzo, 2008a: Modelling mid-Holocene tropical climate and ENSO variability: Towards constraining predictions of future change with palaeo-data. Climate Dyn., 30, 1936, doi:10.1007/s00382-007-0270-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J., A. Tudhope, M. Collins, and H. McGregor, 2008b: Mid-Holocene ENSO: Issues in quantitative model-proxy data comparisons. Paleoceanography, 23, PA3202, doi:10.1029/2007PA001512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bush, A. B., 1999: Assessing the impact of mid-Holocene insolation on the atmosphere–ocean system. Geophys. Res. Lett., 26, 99102, doi:10.1029/1998GL900261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, doi:10.1038/nclimate2100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carré, M., J. P. Sachs, S. Purca, A. J. Schauer, P. Braconnot, R. A. Falcón, M. Julien, and D. Lavallée, 2014: Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific. Science, 345, 10451048, doi:10.1126/science.1252220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., and T. Li, 2000: A theory for the tropical tropospheric biennial oscillation. J. Atmos. Sci., 57, 22092224, doi:10.1175/1520-0469(2000)057<2209:ATFTTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., Y. Yu, and D.-Z. Sun, 2013: Cloud and water vapor feedbacks to the El Niño warming: Are they still biased in CMIP5 models? J. Climate, 26, 49474961, doi:10.1175/JCLI-D-12-00575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., T. Li, and Y. Yu, 2015: Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models. J. Climate, 28, 32503274, doi:10.1175/JCLI-D-14-00439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., T. Li, Y. Yu, and S. K. Behera, 2017: A possible explanation for the divergent projection of ENSO amplitude change under global warming. Climate Dyn., doi:10.1007/s00382-017-3544-x, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J., Y. Fang, and P. Chang, 2009: Pacific climate change and ENSO activity in the mid-Holocene. J. Climate, 22, 923939, doi:10.1175/2008JCLI2644.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1217–1308.

  • Chung, P.-H., and T. Li, 2013: Interdecadal relationship between the mean state and El Niño types. J. Climate, 26, 361379, doi:10.1175/JCLI-D-12-00106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, and M. A. Cane, 2000: Suppression of El Niño during the mid-Holocene by changes in the Earth’s orbit. Paleoceanography, 15, 731737, doi:10.1029/1999PA000466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cobb, K. M., N. Westphal, H. R. Sayani, J. T. Watson, E. Di Lorenzo, H. Cheng, R. L. Edwards, and C. D. Charles, 2013: Highly variable El Niño–Southern Oscillation throughout the Holocene. Science, 339, 6770, doi:10.1126/science.1228246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, J., 2001: A slow dance for El Niño. Science, 291, 14961497, doi:10.1126/science.1059111.

  • Collins, M., 2005: El Niño- or La Niña-like climate change? Climate Dyn., 24, 89104, doi:10.1007/s00382-004-0478-x.

  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, doi:10.1038/ngeo868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conroy, J. L., J. T. Overpeck, J. E. Cole, T. M. Shanahan, and M. Steinitz-Kannan, 2008: Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quat. Sci. Rev., 27, 11661180, doi:10.1016/j.quascirev.2008.02.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., B. P. Kirtman, A. C. Clement, S.-K. Lee, G. A. Vecchi, and A. Wittenberg, 2012: Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J. Climate, 25, 73997420, doi:10.1175/JCLI-D-11-00494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donders, T. H., F. Wagner-Cremer, and H. Visscher, 2008: Integration of proxy data and model scenarios for the mid-Holocene onset of modern ENSO variability. Quat. Sci. Rev., 27, 571579, doi:10.1016/j.quascirev.2007.11.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., and Coauthors, 2016: Links between tropical Pacific seasonal, interannual and orbital variability during the Holocene. Nat. Geosci., 9, 168173, doi:10.1038/ngeo2608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and S. G. Philander, 2000: Is El Niño changing? Science, 288, 19972002, doi:10.1126/science.288.5473.1997.

  • Gagan, M. K., L. K. Ayliffe, D. Hopley, J. A. Cali, G. E. Mortimer, J. Chappell, M. T. McCulloch, and M. J. Head, 1998: Temperature and surface-ocean water balance of the mid-Holocene tropical western Pacific. Science, 279, 10141018, doi:10.1126/science.279.5353.1014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gu, D., T. Li, Z. Ji, and B. Zheng, 2010: On the phase relations between the western North Pacific, Indian, and Australian monsoons. J. Climate, 23, 55725589, doi:10.1175/2010JCLI2761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., 2006: El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26, 329348, doi:10.1007/s00382-005-0084-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hargreaves, J. C., J. D. Annan, R. Ohgaito, A. Paul, and A. Abe-Ouchi, 2013: Skill and reliability of climate model ensembles at the last glacial maximum and mid-Holocene. Climate Past, 9, 811823, doi:10.5194/cp-9-811-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended reconstructed sea surface temperature version 4 (ERSST. v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, doi:10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, doi:10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S. T. Kim, and L. Bejarano, 2006: A coupled-stability index for ENSO. Geophys. Res. Lett., 33, L23708, doi:10.1029/2006GL027221.

  • Kitoh, A., and S. Murakami, 2002: Tropical Pacific climate at the mid-Holocene and the Last Glacial Maximum simulated by a coupled ocean–atmosphere general circulation model. Paleoceanography, 17, 1047, doi:10.1029/2001PA000724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koutavas, A., J. Lynch-Stieglitz, T. M. Marchitto, and J. P. Sachs, 2002: El Niño-like pattern in ice age tropical Pacific sea surface temperature. Science, 297, 226230, doi:10.1126/science.1072376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koutavas, A., P. B. deMenocal, G. C. Olive, and J. Lynch-Stieglitz, 2006: Mid-Holocene El Niño–Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments. Geology, 34, 993996, doi:10.1130/G22810A.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., 1971: Tropical east–west circulations during the northern summer. J. Atmos. Sci., 28, 13421347, doi:10.1175/1520-0469(1971)028<1342:TEWCDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., and N. S. Keenlyside, 2009: El Niño/Southern Oscillation response to global warming. Proc. Natl. Acad. Sci. USA, 106, 20 57820 583, doi:10.1073/pnas.0710860105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 2001: ENSIP: The El Niño simulation intercomparison project. Climate Dyn., 18, 255276, doi:10.1007/s003820100174.

  • Lea, D. W., D. K. Pak, C. L. Belanger, H. J. Spero, M. A. Hall, and N. J. Shackleton, 2006: Paleoclimate history of Galápagos surface waters over the last 135,000 yr. Quat. Sci. Rev., 25, 11521167, doi:10.1016/j.quascirev.2005.11.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., 1997a: Phase transition of the El Niño–Southern Oscillation: A stationary SST mode. J. Atmos. Sci., 54, 28722887, doi:10.1175/1520-0469(1997)054<2872:PTOTEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., 1997b: Air–sea interactions of relevance to the ITCZ: Analysis of coupled instabilities and experiments in a hybrid coupled GCM. J. Atmos. Sci., 54, 134147, doi:10.1175/1520-0469(1997)054<0134:ASIORT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., and T. F. Hogan, 1999: The role of the annual-mean climate on seasonal and interannual variability of the tropical Pacific in a coupled GCM. J. Climate, 12, 780792, doi:10.1175/1520-0442(1999)012<0780:TROTAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., Y. Zhang, E. Lu, and D. Wang, 2002: Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: An OGCM diagnosis. Geophys. Res. Lett., 29, 2110, doi:10.1029/2002GL015789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, doi:10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., W. Yu, and T. Li, 2011: Dynamic and thermodynamic air–sea coupling associated with the Indian Ocean dipole diagnosed from 23 WCRP CMIP3 models. J. Climate, 24, 49414958, doi:10.1175/2011JCLI4041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., J. Kutzbach, and L. Wu, 2000: Modeling climate shift of El Niño variability in the Holocene. Geophys. Res. Lett., 27, 22652268, doi:10.1029/2000GL011452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., Z. Lu, X. Wen, B. L. Otto-Bliesner, A. Timmermann, and K. M. Cobb, 2014: Evolution and forcing mechanisms of El Niño over the past 21,000 years. Nature, 515, 550553, doi:10.1038/nature13963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luan, Y., P. Braconnot, Y. Yu, W. Zheng, and O. Marti, 2012: Early and mid-Holocene climate in the tropical Pacific: Seasonal cycle and interannual variability induced by insolation changes. Climate Past, 8, 10931108, doi:10.5194/cp-8-1093-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGlone, M. S., A. P. Kershaw, and V. Markgraf, 1992: El Niño/Southern Oscillation climatic variability in Australasian and South American paleoenvironmental records. El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation, H. F. Diaz and V. Markgraf, Eds., Cambridge University Press, 435–462.

  • McGregor, H. V., and M. K. Gagan, 2004: Western Pacific coral δ18O records of anomalous Holocene variability in the El Niño–Southern Oscillation. Geophys. Res. Lett., 31, L11204, doi:10.1029/2004GL019972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, H. V., M. J. Fischer, M. K. Gagan, D. Fink, S. J. Phipps, H. Wong, and C. D. Woodroffe, 2013: A weak El Niño/Southern Oscillation with delayed seasonal growth around 4,300 years ago. Nat. Geosci., 6, 949953, doi:10.1038/ngeo1936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., 2006: Changes to ENSO under CO2 doubling in a multimodel ensemble. J. Climate, 19, 40094027, doi:10.1175/JCLI3834.1.

  • Moy, C. M., G. O. Seltzer, D. T. Rodbell, and D. M. Anderson, 2002: Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature, 420, 162165, doi:10.1038/nature01194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 1991: The slow sea surface temperature mode and the fast-wave limit: Analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model. J. Atmos. Sci., 48, 584606, doi:10.1175/1520-0469(1991)048<0584:TSSSTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., E. C. Brady, S. I. Shin, Z. Liu, and C. Shields, 2003: Modeling El Niño and its tropical teleconnections during the last glacial–interglacial cycle. Geophys. Res. Lett., 30, 2198, doi:10.1029/2003GL018553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, W., N. Keenlyside, M. Latif, A. Ströh, R. Redler, E. Roeckner, and G. Madec, 2009: Tropical Pacific climate and its response to global warming in the Kiel Climate Model. J. Climate, 22, 7192, doi:10.1175/2008JCLI2261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.

  • Philip, S., and G. J. van Oldenborgh, 2006: Shifts in ENSO coupling processes under global warming. Geophys. Res. Lett., 33, L11704, doi:10.1029/2006GL026196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N., D. E. Parker, E. Horton, C. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rein, B., A. Lückge, L. Reinhardt, F. Sirocko, A. Wolf, and W. C. Dullo, 2005: El Niño variability off Peru during the last 20,000 years. Paleoceanography, 20, PA4003, doi:10.1029/2004PA001099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riedinger, M. A., M. Steinitz-Kannan, W. M. Last, and M. Brenner, 2002: A ~6100 14C yr record of El Niño activity from the Galápagos Islands. J. Paleolimnol., 27, 17, doi:10.1023/A:1013514408468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, W. H., D. S. Battisti, and A. W. Tudhope, 2014: ENSO in the mid-Holocene according to CSM and HadCM3. J. Climate, 27, 12231242, doi:10.1175/JCLI-D-13-00251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodbell, D. T., G. O. Seltzer, D. M. Anderson, M. B. Abbott, D. B. Enfield, and J. H. Newman, 1999: An ~15,000-year record of El Niño-driven alluviation in southwestern Ecuador. Science, 283, 516520, doi:10.1126/science.283.5401.516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandweiss, D. H., J. B. Richardson III, E. J. Reitz, H. B. Rollins, and K. A. Maasch, 1996: Geoarchaeological evidence from Peru for a 5000 years B.P. onset of El Niño. Science, 273, 15311533, doi:10.1126/science.273.5281.1531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shulmeister, J., and B. G. Lees, 1995: Pollen evidence from tropical Australia for the onset of an ENSO-dominated climate at c. 4000 BP. Holocene, 5, 1018, doi:10.1177/095968369500500102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, L., K. Cannariato, R. Thunell, G. H. Haug, A. Koutavas, and S. Lund, 2004: Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature, 431, 5659, doi:10.1038/nature02903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, J., R. Zhang, T. Li, X. Rong, J. Kug, and C.-C. Hong, 2010: Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605617, doi:10.1175/2009JCLI2894.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 32833287, doi:10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tudhope, A. W., and Coauthors, 2001: Variability in the El Niño–Southern Oscillation through a glacial–interglacial cycle. Science, 291, 15111517, doi:10.1126/science.1057969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., S. Philip, and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1, 8195, doi:10.5194/os-1-81-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and T. Li, 1993: A simple tropical atmosphere model of relevance to short-term climate variations. J. Atmos. Sci., 50, 260284, doi:10.1175/1520-0469(1993)050<0260:ASTAMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and S.-I. An, 2001: Why the properties of El Niño changed during the late 1970s. Geophys. Res. Lett., 28, 37093712, doi:10.1029/2001GL012862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and S.-I. An, 2002: A mechanism for decadal changes of ENSO behavior: Roles of background wind changes. Climate Dyn., 18, 475486, doi:10.1007/s00382-001-0189-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 29923005, doi:10.1175/2008JCLI2710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Climate Dyn., 41, 327340, doi:10.1007/s00382-012-1427-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., and B. P. Kirtman, 2007: ENSO amplitude changes due to climate change projections in different coupled models. J. Climate, 20, 203217, doi:10.1175/JCLI4001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278, doi:10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelle, H., G. J. van Oldenborgh, G. Burgers, and H. Dijkstra, 2005: El Niño and greenhouse warming: Results from ensemble simulations with the NCAR CCSM. J. Climate, 18, 46694683, doi:10.1175/JCLI3574.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. Li, 2014: A simple analytical model for understanding the formation of sea surface temperature patterns under global warming. J. Climate, 27, 84138421, doi:10.1175/JCLI-D-14-00346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., and F.-F. Jin, 2012: Improvements in the CMIP5 simulations of ENSO–SSTA meridional width. Geophys. Res. Lett., 39, L23704, doi:10.1029/2012GL053588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., J. Li, and F.-F. Jin, 2009: Spatial and temporal features of ENSO meridional scales. Geophys. Res. Lett., 36, L15605, doi:10.1029/2009GL038672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., F.-F. Jin, J.-X. Zhao, and J. Li, 2013: On the bias in simulated ENSO SSTA meridional widths of CMIP3 models. J. Climate, 26, 31733186, doi:10.1175/JCLI-D-12-00347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, W., P. Braconnot, E. Guilyardi, U. Merkel, and Y. Yu, 2008: ENSO at 6ka and 21ka from ocean–atmosphere coupled model simulations. Climate Dyn., 30, 745762, doi:10.1007/s00382-007-0320-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1762 783 48
PDF Downloads 829 225 16