• Allen, M., and W. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

  • Allen, R., L. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration—Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp (see especially chapter 4). [Available online at http://www.fao.org/docrep/X0490E/X0490E00.htm.]

  • Andrews, T., P. Forster, O. Boucher, N. Bellouin, and A. Jones, 2010: Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett., 37, L14701, doi:10.1029/2010GL043991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., M. Doutriaux-Boucher, O. Boucher, and P. Forster, 2011: A regional and global analysis of carbon dioxide physiological forcing and its impact on climate. Climate Dyn., 36, 783792, doi:10.1007/s00382-010-0742-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asner, G., P. Brodrick, C. Anderson, N. Vaughn, D. Knapp, and R. Martin, 2016: Progressive forest canopy water loss during the 2012–2015 California drought. Proc. Natl. Acad. Sci. USA, 113, E249E255, doi:10.1073/pnas.1523397113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bala, G., K. Caldeira, and R. Nemani, 2010: Fast versus slow response in climate change: Implications for the global hydrological cycle. Climate Dyn., 35, 423434, doi:10.1007/s00382-009-0583-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A., and Coauthors, 2016: Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Climate Change, 6, 869874, doi:10.1038/nclimate3029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonfils, C., B. Santer, T. Phillips, K. Marvel, L. Leung, C. Doutriaux, and A. Capotondi, 2015: Relative contributions of mean-state shifts and ENSO-driven variability to precipitation changes in a warming climate. J. Climate, 28, 999710 013, doi:10.1175/JCLI-D-15-0341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., G. Bellon, D. Klocke, S. Sherwood, S. Fermepin, and S. Denvil, 2013: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci., 6, 447451, doi:10.1038/ngeo1799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, E., and S. Brown, 2008: Evaluating uncertainties in the projection of future drought. J. Hydrometeor., 9, 292299, doi:10.1175/2007JHM929.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, E., S. Brown, and N. Christidis, 2006: Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. J. Hydrometeor., 7, 11131125, doi:10.1175/JHM544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, doi:10.1038/nclimate2100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, L., G. Bala, and K. Caldeira, 2012: Climate response to changes in atmospheric carbon dioxide and solar irradiance on the time scale of days to weeks. Environ. Res. Lett., 7, 034015, doi:10.1088/1748-9326/7/3/034015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., 2015: Atmospheric science: Extreme La Niña events to increase. Nat. Climate Change, 5, 100101, doi:10.1038/nclimate2509.

  • Chadwick, R., 2016: Which aspects of CO2 forcing and SST warming cause most uncertainty in projections of tropical rainfall change over land and ocean? J. Climate, 29, 24932509, doi:10.1175/JCLI-D-15-0777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., P. Good, T. Andrews, and G. Martin, 2014: Surface warming patterns drive tropical rainfall pattern responses to CO2 forcing on all timescales. Geophys. Res. Lett., 41, 610615, doi:10.1002/2013GL058504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coelho, C., and L. Goddard, 2009: El Niño–induced tropical droughts in climate change projections. J. Climate, 22, 64566476, doi:10.1175/2009JCLI3185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific ocean and El Niño. Nat. Geosci., 3, 391397, doi:10.1038/ngeo868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colman, R., 2015: Climate radiative feedbacks and adjustments at the Earth’s surface. J. Geophys. Res. Atmos., 120, 31733182, doi:10.1002/2014JD022896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., J. Smerdon, R. Seager, and S. Coats, 2014: Global warming and 21st century drying. Climate Dyn., 43, 26072627, doi:10.1007/s00382-014-2075-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., T. R. Ault, and J. E. Smerdon, 2015: Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv., 1, e1400082, doi:10.1126/sciadv.1400082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., E. R. Cook, J. E. Smerdon, R. Seager, A. P. Williams, S. Coats, D. W. Stahle, and J. V. Díaz, 2016: North American megadroughts in the Common Era: Reconstructions and simulations. Wiley Interdiscip. Rev.: Climate Change, 7, 411432, doi:10.1002/wcc.394.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011a: Drought under global warming: A review. Wiley Interdiscip. Rev.: Climate Change, 2, 4565, doi:10.1002/wcc.81.

  • Dai, A., 2011b: Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res., 116, D12115, doi:10.1029/2010JD015541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, doi:10.1038/nclimate1633.

  • DeAngelis, A. M., X. Qu, and A. C. G. L. Hall, 2016: Importance of vegetation processes for model spread in the fast precipitation response to CO2 forcing. Geophys. Res. Lett., 43, 12 55012 559, doi:10.1002/2016GL071392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N., D. Swain, and D. Touma, 2015: Anthropogenic warming has increased drought risk in California. Proc. Natl. Acad. Sci. USA, 112, 39313936, doi:10.1073/pnas.1422385112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P., L. Yu, S. Amini, A. Crowell, A. Elders, and J. Wu, 2016: Projections of the shifting envelope of water cycle variability. Climatic Change, 136, 587600, doi:10.1007/s10584-016-1634-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., J. Gregory, and R. Sutton, 2009: Understanding land–sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J. Climate, 22, 30793097, doi:10.1175/2009JCLI2652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doutriaux-Boucher, M., M. Webb, J. Gregory, and O. Boucher, 2009: Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud. Geophys. Res. Lett., 36, L02703, doi:10.1029/2008GL036273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P., S. Wijffels, and R. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458, doi:10.1126/science.1212222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farquhar, G., and T. Sharkey, 1982: Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol., 33, 317345, doi:10.1146/annurev.pp.33.060182.001533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., and Q. Fu, 2013: Expansion of global drylands under a warming climate. Atmos. Chem. Phys., 13, 10 08110 094, doi:10.5194/acp-13-10081-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., M. Trnka, M. Hayes, and Y. Zhang, 2017: Why do different drought indices show distinct future drought risk outcomes in the U.S. Great Plains? J. Climate, 30, 265278, doi:10.1175/JCLI-D-15-0590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, D., and Coauthors, 2015: Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Climate Change, 5, 579583, doi:10.1038/nclimate2614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and S. Feng, 2014: Responses of terrestrial aridity to global warming. J. Geophys. Res., 119, 78637875, doi:10.1002/2014JD021608.

  • Gates, W., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 2955, doi:10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goudriaan, J., and M. H. Unsworth, 1990: Implications of increasing carbon dioxide and climate change for the agricultural productivity and water resources. Impacts of Carbon Dioxide, Trace Gases and Climate Change on Global Agriculture, B. A. Kimball, N. J. Rosenberg, and L. H. Allen, Eds., American Society of Agronomy, 111–130.

    • Crossref
    • Export Citation
  • Greve, P., B. Orlowsky, B. Mueller, J. Sheffield, M. Reichstein, and S. Seneviratne, 2014: Global assessment of trends in wetting and drying over land. Nat. Geosci., 7, 716721, doi:10.1038/ngeo2247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagemann, S., and T. Stacke, 2015: Impact of the soil hydrology scheme on simulated soil moisture memory. Climate Dyn., 44, 17311750, doi:10.1007/s00382-014-2221-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I., and B. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, doi:10.1038/nature09396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamae, Y., and M. Watanabe, 2012: On the robustness of tropospheric adjustment in CMIP5 models. Geophys. Res. Lett., 39, L23808, doi:10.1029/2012GL054275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamae, Y., H. Shiogama, M. Watanabe, M. Ishii, H. Ueda, and M. Kimoto, 2015: Recent slowdown of tropical upper tropospheric warming associated with Pacific climate variability. Geophys. Res. Lett., 42, 29953003, doi:10.1002/2015GL063608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H., and J. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

  • Maher, N., A. Sen Gupta, and M. England, 2014: Drivers of decadal hiatus periods in the 20th and 21st centuries. Geophys. Res. Lett., 41, 59785986, doi:10.1002/2014GL060527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., R. Wetherald, and R. Stouffer, 1981: Summer dryness due to an increase of atmospheric CO2 concentration. Climatic Change, 3, 347386, doi:10.1007/BF02423242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marvel, K., and C. Bonfils, 2013: Identifying external influences on global precipitation. Proc. Natl. Acad. Sci. USA, 110, 19 30119 306, doi:10.1073/pnas.1314382110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G., and D. Wolock, 2015: Increasing Northern Hemisphere water deficit. Climatic Change, 132, 237249, doi:10.1007/s10584-015-1419-x.

  • Middleton, N., and D. Thomas, 1992: World Atlas of Desertification. United Nations Environment Programme, 69 pp.

  • Milly, P. C. D., and K. A. Dunne, 2016: Potential evapotranspiration and continental drying. Nat. Climate Change, 6, 946949, doi:10.1038/nclimate3046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D., and Coauthors, 2014: El Niño–La Niña cycle and recent trends in continental evaporation. Nat. Climate Change, 4, 122126, doi:10.1038/nclimate2068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2017: PDRMIP: A Precipitation Driver and Response Model Intercomparison Project—Protocol and preliminary results. Bull. Amer. Meteor. Soc., 98, 11851198, doi:10.1175/BAMS-D-16-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nemani, R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running, 2003: Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 15601563, doi:10.1126/science.1082750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, W., 1965: Meteorological Drought. U.S. Department of Commerce Paper 45, 58 pp.

  • Pendergrass, A., and D. Hartmann, 2014: The atmospheric energy constraint on global-mean precipitation change. J. Climate, 27, 757768, doi:10.1175/JCLI-D-13-00163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polson, D., G. Hegerl, R. Allan, and B. Sarojini, 2013: Have greenhouse gases intensified the contrast between wet and dry regions? Geophys. Res. Lett., 40, 47834787, doi:10.1002/grl.50923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., F. Delage, C. Chung, G. Kociuba, and K. Keay, 2013: Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502, 541545, doi:10.1038/nature12580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, T., P. Forster, T. Andrews, and D. Parker, 2016: Understanding the rapid precipitation response to CO2 and aerosol forcing on a regional scale. J. Climate, 29, 583594, doi:10.1175/JCLI-D-15-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M., P. Greve, and G. Farquhar, 2015: On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res., 51, 54505463, doi:10.1002/2015WR017031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samset, B., and Coauthors, 2016: Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study. Geophys. Res. Lett., 43, 27822791, doi:10.1002/2016GL068064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. M. W. Frierson, 2014: Scaling potential evapotranspiration with greenhouse warming. J. Climate, 27, 15391558, doi:10.1175/JCLI-D-13-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. M. W. Frierson, 2015: Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. J. Climate, 28, 55835600, doi:10.1175/JCLI-D-14-00480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, W., and S. Jasechko, 2014: Transpiration in the global water cycle. Agric. For. Meteor., 189–190, 115117, doi:10.1016/j.agrformet.2014.01.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and N. Henderson, 2016: On the role of tropical ocean forcing of the persistent North American West Coast ridge of winter 2013/14. J. Climate, 29, 80278049, doi:10.1175/JCLI-D-16-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D., Q. Fu, W. Randel, and T. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, doi:10.1038/ngeo.2007.38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sewall, J., 2005: Precipitation shifts over western North America as a result of declining Arctic sea ice cover: The coupled system response. Earth Interact., 9, doi:10.1175/EI171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sewall, J., and L. Sloan, 2004: Disappearing Arctic sea ice reduces available water in the American west. Geophys. Res. Lett., 31, L06209, doi:10.1029/2003GL019133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., E. F. Wood, and M. L. Roderick, 2012: Little change in global drought over the past 60 years. Nature, 491, 435438, doi:10.1038/nature11575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S., 2015: Climate science: The sun and the rain. Nature, 528, 200201, doi:10.1038/528200a.

  • Smerdon, J., B. Cook, E. Cook, and R. Seager, 2015: Bridging past and future climate across paleoclimatic reconstructions, observations, and models: A hydroclimate case study. J. Climate, 28, 32123231, doi:10.1175/JCLI-D-14-00417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swain, D. L., D. E. Horton, D. Singh, and N. S. Diffenbaugh, 2016: Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. Sci. Adv., 2, e1501344, doi:10.1126/sciadv.1501344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A., F. Hoffman, C. Koven, and J. Randerson, 2016: Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl. Acad. Sci. USA, 113, 10 01910 024, doi:10.1073/pnas.1604581113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K., R. Stouffer, and G. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, L., and T. Andrews, 2014: The physical drivers of historical and 21st century global precipitation changes. Environ. Res. Lett., 9, 064024, doi:10.1088/1748-9326/9/6/064024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, D., W. Dong, D. Gong, Y. Guo, and S. Yang, 2017: Fast responses of climate system to carbon dioxide, aerosols and sulfate aerosols without the mediation of SST in the CMIP5. Int. J. Climatol., 37, 11561166, doi:10.1002/joc.4763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K., 2011: Changes in precipitation with climate change. Climate Res., 47, 123138, doi:10.3354/cr00953.

  • Ukkola, A., I. Prentice, T. Keenan, A. van Dijk, N. Viney, R. Myneni, and J. Bi, 2016: Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Climate Change, 6, 7578, doi:10.1038/nclimate2831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Vuuren, D., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G., and A. Wittenberg, 2010: El Niño and our future climate: Where do we stand? Wiley Interdiscip. Rev.: Climate Change, 1, 260270, doi:10.1002/wcc.33.

    • Search Google Scholar
    • Export Citation
  • Wehner, M., D. Easterling, J. Lawrimore, R. Heim, R. Vose, and B. Santer, 2011: Projections of future drought in the continental United States and Mexico. J. Hydrometeor., 12, 13591377, doi:10.1175/2011JHM1351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetherald, R., 2010: Changes of time mean state and variability of hydrology in response to a doubling and quadrupling of CO2. Climatic Change, 102, 651670, doi:10.1007/s10584-009-9701-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetherald, R., and S. Manabe, 2002: Simulation of hydrologic changes associated with global warming. J. Geophys. Res., 107, 4379, doi:10.1029/2001JD001195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, A., R. Seager, J. Abatzoglou, B. Cook, J. Smerdon, and E. Cook, 2015: Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett., 42, 68196828, doi:10.1002/2015GL064924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and J. J. Feddema, 1992: A more rational climatic moisture index. Prof. Geogr., 44, 8488, doi:10.1111/j.0033-0124.1992.00084.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., C. Deser, G. Vecchi, J. Ma, H. Teng, and A. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, doi:10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, K., J. Kimball, R. Nemani, S. Running, Y. Hong, J. Gourley, and Z. Yu, 2015: Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep., 5, 15956, doi:10.1038/srep15956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., and A. Dai, 2015: The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. J. Climate, 28, 44904512, doi:10.1175/JCLI-D-14-00363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Z., S. Xie, X. Zheng, Q. Liu, and H. Wang, 2014: Global warming–induced changes in El Niño teleconnections over the North Pacific and North America. J. Climate, 27, 90509064, doi:10.1175/JCLI-D-14-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 116 116 37
PDF Downloads 109 109 41

Competing Influences of Anthropogenic Warming, ENSO, and Plant Physiology on Future Terrestrial Aridity

View More View Less
  • 1 Lawrence Livermore National Laboratory, Livermore, California
  • 2 Annuaire des Laboratoires et des Recherches, Université de Lorraine, UMR1137, Champenoux, France
  • 3 Lawrence Livermore National Laboratory, Livermore, California
  • 4 Columbia University, and NASA Goddard Institute for Space Studies, New York, New York
  • 5 Lawrence Livermore National Laboratory, Livermore, California
© Get Permissions
Restricted access

Abstract

The 2011–16 California drought illustrates that drought-prone areas do not always experience relief once a favorable phase of El Niño–Southern Oscillation (ENSO) returns. In the twenty-first century, such an expectation is unrealistic in regions where global warming induces an increase in terrestrial aridity larger than the changes in aridity driven by ENSO variability. This premise is also flawed in areas where precipitation supply cannot offset the global warming–induced increase in evaporative demand. Here, atmosphere-only experiments are analyzed to identify land regions where aridity is currently sensitive to ENSO and where projected future changes in mean aridity exceed the range caused by ENSO variability. Insights into the drivers of these changes in aridity are obtained using simulations with the incremental addition of three different factors to the current climate: ocean warming, vegetation response to elevated CO2 levels, and intensified CO2 radiative forcing. The effect of ocean warming overwhelms the range of ENSO-driven temperature variability worldwide, increasing potential evapotranspiration (PET) in most ENSO-sensitive regions. Additionally, about 39% of the regions currently sensitive to ENSO will likely receive less precipitation in the future, independent of the ENSO phase. Consequently aridity increases in 67%–72% of the ENSO-sensitive area. When both radiative and physiological effects are considered, the area affected by arid conditions rises to 75%–79% when using PET-derived measures of aridity, but declines to 41% when an aridity indicator for total soil moisture is employed. This reduction mainly occurs because plant stomatal resistance increases under enhanced CO2 concentrations, resulting in improved plant water-use efficiency, and hence reduced evapotranspiration and soil desiccation. Imposing CO2-invariant stomatal resistance may overestimate future drying in PET-derived indices.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-17-0005.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Céline Bonfils, bonfils2@llnl.gov

Abstract

The 2011–16 California drought illustrates that drought-prone areas do not always experience relief once a favorable phase of El Niño–Southern Oscillation (ENSO) returns. In the twenty-first century, such an expectation is unrealistic in regions where global warming induces an increase in terrestrial aridity larger than the changes in aridity driven by ENSO variability. This premise is also flawed in areas where precipitation supply cannot offset the global warming–induced increase in evaporative demand. Here, atmosphere-only experiments are analyzed to identify land regions where aridity is currently sensitive to ENSO and where projected future changes in mean aridity exceed the range caused by ENSO variability. Insights into the drivers of these changes in aridity are obtained using simulations with the incremental addition of three different factors to the current climate: ocean warming, vegetation response to elevated CO2 levels, and intensified CO2 radiative forcing. The effect of ocean warming overwhelms the range of ENSO-driven temperature variability worldwide, increasing potential evapotranspiration (PET) in most ENSO-sensitive regions. Additionally, about 39% of the regions currently sensitive to ENSO will likely receive less precipitation in the future, independent of the ENSO phase. Consequently aridity increases in 67%–72% of the ENSO-sensitive area. When both radiative and physiological effects are considered, the area affected by arid conditions rises to 75%–79% when using PET-derived measures of aridity, but declines to 41% when an aridity indicator for total soil moisture is employed. This reduction mainly occurs because plant stomatal resistance increases under enhanced CO2 concentrations, resulting in improved plant water-use efficiency, and hence reduced evapotranspiration and soil desiccation. Imposing CO2-invariant stomatal resistance may overestimate future drying in PET-derived indices.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-17-0005.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Céline Bonfils, bonfils2@llnl.gov

Supplementary Materials

    • Supplemental Materials (PDF 40.29 MB)
Save