• Choi, K.-S., H.-D. Kim, S.-D. Kang, and C.-S. Shim, 2016: Decreasing trend of tropical cyclone genesis frequency in July–August over the western North Pacific in the last 20 years. Theor. Appl. Climatol., 125, 241251, doi:10.1007/s00704-015-1497-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation systems. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., J. P. Kossin, and T. H. Jagger, 2008: The increasing intensity of the strongest tropical cyclones. Nature, 455, 9295, doi:10.1038/nature07234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, doi:10.1038/nature03906.

  • Emanuel, K. A., S. Solomon, D. Folini, S. Davis, and C. Cagnazzo, 2013: Influence of tropical tropopause layer cooling on Atlantic hurricane activity. J. Climate, 26, 22882301, doi:10.1175/JCLI-D-12-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, H. Z., J. Yang, D. Y. Gong, R. Mao, Y. Wang, and M. N. Gao, 2015: Decadal changes in tropical cyclone activity over the western North Pacific in the late 1990s. Climate Dyn., 45, 33173329, doi:10.1007/s00382-015-2541-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, N., and J. Elsner, 2016: Climate mechanism for stronger typhoons in a warmer world. J. Climate, 29, 10511057, doi:10.1175/JCLI-D-15-0585.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2006: Trends in global tropical cyclone activity over the past twenty years (1986–2005). Geophys. Res. Lett., 33, L10805, doi:10.1029/2006GL025881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and C. W. Landsea, 2015: Extremely intense hurricanes: Revisiting Webster et al. (2005) after 10 years. J. Climate, 28, 76217629, doi:10.1175/JCLI-D-15-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2015: Validating atmospheric reanalysis data using tropical cyclones as thermometers. Bull. Amer. Meteor. Soc., 96, 10891096, doi:10.1175/BAMS-D-14-00180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., T. L. Olander, and K. R. Knapp, 2013: Trend analysis with a new global record of tropical cyclone intensity. J. Climate, 26, 99609976, doi:10.1175/JCLI-D-13-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. A. Emanuel, and G. A. Vecchi, 2014: The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509, 349352, doi:10.1038/nature13278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. A. Emanuel, and S. Camargo, 2016: Past and projected changes in western North Pacific tropical cyclone exposure. J. Climate, 29, 57255739, doi:10.1175/JCLI-D-16-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., and J. C. L. Chan, 2015: Recent decrease in typhoon destructive potential and global warming implications. Nat. Commun., 6, 7182, doi:10.1038/ncomms8182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 2013: Inactive period of western North Pacific tropical cyclone activity in 1998–2011. J. Climate, 26, 26142630, doi:10.1175/JCLI-D-12-00053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, C., B. Timbal, and H. Nguyen, 2014: The expanding tropics: A critical assessment of the observational and modeling studies. Wiley Interdiscip. Rev.: Climate Change, 5, 89112, doi:10.1002/wcc.251.

    • Search Google Scholar
    • Export Citation
  • Mei, W., and S.-P. Xie, 2016: Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nat. Geosci., 9, 753757, doi:10.1038/ngeo2792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NDRRMC, 2014: Updates re the effects of Typhoon “Yolanda” (Haiyan). National Disaster Risk Reduction and Management Council, Republic of the Philippines, 2 pp. [Available online at http://www.ndrrmc.gov.ph/attachments/article/1329/Update_on_Effects_Typhoon_YOLANDA_(Haiyan)_17APR2014.pdf.]

  • Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006: Tropical cyclone climatology in a global warming climate as simulated in a 20-km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259276, doi:10.2151/jmsj.84.259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, D.-S. R., C.-H. Ho, J.-H. Kim, and H.-S. Kim, 2011: Strong landfall typhoons in Korea and Japan in a recent decade. J. Geophys. Res., 116, D07105, doi:10.1029/2010JD014801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, D.-S. R., C.-H. Ho, J.-H. Kim, and H.-S. Kim, 2013: Spatially inhomogeneous trends of tropical cyclone intensity over the western North Pacific for 1977–2010. J. Climate, 26, 50885101, doi:10.1175/JCLI-D-12-00386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, doi:10.1038/ngeo.2007.38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., S. Fueglistaler, I. M. Held, T. R. Knutson, and M. Zhao, 2013: Impacts of atmospheric temperature trends on tropical cyclone activity. J. Climate, 26, 38773891, doi:10.1175/JCLI-D-12-00503.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 18441846, doi:10.1126/science.1116448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., K. Emanuel, and S. Solomon, 2015: On the factors affecting trends and variability in tropical cyclone potential intensity. Geophys. Res. Lett., 42, 86698677, doi:10.1002/2015GL066145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., B. Wang, and S. Geng, 2005: Growing typhoon influence on East Asia. Geophys. Res. Lett., 32, L18703, doi:10.1029/2005GL022937.

  • Ying, M., W. Zhang, H. Yu, X. Lu, J. Feng, Y. Fan, Y. Zhu, and D. Chen, 2014: An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287301, doi:10.1175/JTECH-D-12-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshimura, J., M. Sugi, and A. Noda, 2006: Influence of greenhouse warming on tropical cyclone frequency. J. Meteor. Soc. Japan, 84, 405428, doi:10.2151/jmsj.84.405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R. F., Y. Wang, and M. Ying, 2012: Seasonal forecasts of tropical cyclone activity over the western North Pacific: A review. Trop. Cyclone Res. Rev., 1, 307324, doi:10.6057/2012TCRR03.07.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 92 92 33
PDF Downloads 81 81 34

Weak Tropical Cyclones Dominate the Poleward Migration of the Annual Mean Location of Lifetime Maximum Intensity of Northwest Pacific Tropical Cyclones since 1980

View More View Less
  • 1 Shanghai Typhoon Institute of China Meteorological Administration, Shanghai, China, and International Pacific Research Center, and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • 2 International Pacific Research Center, and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
© Get Permissions
Restricted access

Abstract

The poleward migration of the annual mean location of tropical cyclone (TC) lifetime maximum intensity (LMI) has been identified in the major TC basins of the globe over the past 30 years, which is particularly robust over the western North Pacific (WNP). This study has revealed that this poleward migration consists mainly of weak TCs (with maximum sustained surface wind speed less than 33 m s−1) over the WNP. Results show that the location of LMI of weak TCs has migrated about 1° latitude poleward per decade since 1980, while such a trend is considerably smaller for intense TCs. This is found to be linked to a significant decreasing trend of TC genesis in the southern WNP and a significant increasing trend in the northwestern WNP over the past 30 years. It is shown that the greater sea surface temperature (SST) warming at higher latitudes associated with global warming and its associated changes in the large-scale circulation favor more TCs to form in the northern WNP and fewer but stronger TCs to form in the southern WNP.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Yuqing Wang, yuqing@hawaii.edu

Abstract

The poleward migration of the annual mean location of tropical cyclone (TC) lifetime maximum intensity (LMI) has been identified in the major TC basins of the globe over the past 30 years, which is particularly robust over the western North Pacific (WNP). This study has revealed that this poleward migration consists mainly of weak TCs (with maximum sustained surface wind speed less than 33 m s−1) over the WNP. Results show that the location of LMI of weak TCs has migrated about 1° latitude poleward per decade since 1980, while such a trend is considerably smaller for intense TCs. This is found to be linked to a significant decreasing trend of TC genesis in the southern WNP and a significant increasing trend in the northwestern WNP over the past 30 years. It is shown that the greater sea surface temperature (SST) warming at higher latitudes associated with global warming and its associated changes in the large-scale circulation favor more TCs to form in the northern WNP and fewer but stronger TCs to form in the southern WNP.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Yuqing Wang, yuqing@hawaii.edu
Save