A Cold Event in Asia during January–February 2012 and Its Possible Association with Arctic Sea Ice Loss

Bingyi Wu Institute of Atmospheric Sciences, Fudan University, Shanghai, and Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Bingyi Wu in
Current site
Google Scholar
PubMed
Close
,
Kun Yang National Meteorological Center, Beijing, China

Search for other papers by Kun Yang in
Current site
Google Scholar
PubMed
Close
, and
Jennifer A. Francis Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Jennifer A. Francis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Through both observational analyses and simulation experiments, this study investigates the intraseasonal evolution of atmospheric circulation anomalies associated with a persistent cold event in the Asian continent during late January–early February 2012, and the possible association with Arctic sea ice loss and Arctic atmospheric circulation during the preceding summer. The results suggest that the northeastern Pacific–Aleutian region and central Eurasia are two critical areas where the atmospheric circulation evolution contributed to the development of this cold event. A persistent increase in sea level pressure (SLP) over the Aleutian region was a predominant feature prior to the cold event, and then decreasing SLP over this region was concurrent with both occurrence of a polar blocking high aloft and rapid strengthening of the Siberian high, triggering outbreaks of Arctic air over the Asian continent. Consequently, the influence of the Aleutian region on this cold event (i.e., the downstream effect of the atmospheric circulation) played a critical role. Simulation experiments demonstrate that Arctic atmospheric circulation conditions in the summer of 2011 significantly enhanced a negative feedback of Arctic sea ice loss on atmospheric circulation over the Aleutian region and central Eurasia during the ensuing wintertime, which could have led to the favorable atmospheric circulation that facilitated the occurrence of cold events resembling the one in 2012. This study also implies that the Aleutian low and disturbances in the midlatitudes over the northeastern Pacific may provide precursors that could increase skill in predicting the intraseasonal evolution of extreme cold events over Eurasia.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bingyi Wu, bywu@fudan.edu.cn

Abstract

Through both observational analyses and simulation experiments, this study investigates the intraseasonal evolution of atmospheric circulation anomalies associated with a persistent cold event in the Asian continent during late January–early February 2012, and the possible association with Arctic sea ice loss and Arctic atmospheric circulation during the preceding summer. The results suggest that the northeastern Pacific–Aleutian region and central Eurasia are two critical areas where the atmospheric circulation evolution contributed to the development of this cold event. A persistent increase in sea level pressure (SLP) over the Aleutian region was a predominant feature prior to the cold event, and then decreasing SLP over this region was concurrent with both occurrence of a polar blocking high aloft and rapid strengthening of the Siberian high, triggering outbreaks of Arctic air over the Asian continent. Consequently, the influence of the Aleutian region on this cold event (i.e., the downstream effect of the atmospheric circulation) played a critical role. Simulation experiments demonstrate that Arctic atmospheric circulation conditions in the summer of 2011 significantly enhanced a negative feedback of Arctic sea ice loss on atmospheric circulation over the Aleutian region and central Eurasia during the ensuing wintertime, which could have led to the favorable atmospheric circulation that facilitated the occurrence of cold events resembling the one in 2012. This study also implies that the Aleutian low and disturbances in the midlatitudes over the northeastern Pacific may provide precursors that could increase skill in predicting the intraseasonal evolution of extreme cold events over Eurasia.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bingyi Wu, bywu@fudan.edu.cn
Save
  • Alexander, A., S. Bhatt, and J. Walsh, 2004: The atmospheric response to realistic sea ice anomalies in an AGCM during winter. J. Climate, 17, 890905, doi:10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1987: A striking example of the atmosphere’s leading traveling pattern. J. Atmos. Sci., 44, 23102323, doi:10.1175/1520-0469(1987)044<2310:ASEOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., and K.-M. Lau, 1980: Northeasterly cold surges and near-equatorial disturbances over the winter MONEX area during December 1974. Part II: Planetary-scale aspects. Mon. Wea. Rev., 108, 298312, doi:10.1175/1520-0493(1980)108<0298:NCSANE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., and K.-M. Lau, 1982: Short-term planetary-scale interaction over the tropics and midlatitudes during northern winter. Part I: Contrasts between active and inactive periods. Mon. Wea. Rev., 110, 933946, doi:10.1175/1520-0493(1982)110<0933:STPSIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., W.-R. Huang, and J.-H. Yoon, 2004: Interannual variation of the east Asian cold surge activity. J. Climate, 17, 401413, doi:10.1175/1520-0442(2004)017<0401:IVOTEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, doi:10.1038/ngeo2234.

  • Davies, H. C., 2015: Weather chains during the 2013/2014 winter and their significance for seasonal prediction. Nat. Geosci., 8, 833837, doi:10.1038/ngeo2561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., G. Magnusdottir, R. Saravanan, and A. Phillips, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. J. Climate, 17, 877889, doi:10.1175/1520-0442(2004)017<0877:TEONAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y.-H., 1990: Build-up, air mass transformation and propagation of Siberian high and its relation to cold surge in east Asia. Meteor. Atmos. Phys., 44, 281292, doi:10.1007/BF01026822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y.-H., and T. N. Krishnamurti, 1987: Heat budget of Siberian high and winter monsoon. Mon. Wea. Rev., 115, 24282449, doi:10.1175/1520-0493(1987)115<2428:HBOTSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J., and S. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J., and S. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett., 10, 014005, doi:10.1088/1748-9326/10/1/014005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., and C.-H. Ho, 2002: The Siberian high and climate change over middle to high latitude Asia. Theor. Appl. Climatol., 72, 19, doi:10.1007/s007040200008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hadley Centre for Climate Prediction and Research, 2006: Met Office HadISST 1.1—Global sea-Ice coverage and Sea Surface Temperature (1870-2015). NCAS British Atmospheric Data Centre, accessed 5 January 2016. [Available online at http://catalogue.ceda.ac.uk/uuid/facafa2ae494597166217a9121a62d3c.]

  • Honda, M., J. Inous, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaiser, R., K. Dethloff, and D. Handorf, 2013: Stratospheric response to Arctic sea ice retreat and associated planetary wave propagation changes. Tellus, 65A, 19375, doi:10.3402/tellusa.v65i0.19375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., and C.-H. Ho, 2005: Changes in occurrence of cold surges over east Asia in association with Arctic Oscillation. Geophys. Res. Lett., 32, L14704, doi:10.1029/2005GL023024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., B.-M. Kim, C.-H. Ho, D. Chen, and G.-H. Lim, 2006: Stratospheric origin of cold surge occurrence in east Asia. Geophys. Res. Lett., 33, L14710, doi:10.1029/2006GL026607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J., J. Jeong, Y. Jang, B. Kim, C. Folland, S. Min, and S. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci., 8, 759762, doi:10.1038/ngeo2517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1987: Retrograding wintertime low-frequency disturbances over the North Pacific Ocean. J. Atmos. Sci., 44, 27272742, doi:10.1175/1520-0469(1987)044<2727:RWLFDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., B. Stevens, and J. Marotzke, 2015: Eurasian winter cooling in the warming hiatus of 1998–2012. Geophys. Res. Lett., 42, 81318139, doi:10.1002/2015GL065327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J. Curry, H. Wang, M. Song, and R. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, doi:10.1073/pnas.1114910109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusdottir, G., C. Deser, and R. Saravanan, 2004: The effects of North Atlantic SST and sea ice anomalies in the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response. J. Climate, 17, 857876, doi:10.1175/1520-0442(2004)017<0857:TEONAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCusker, K. E., J. C. Fyfe, and M. Sigmond, 2016: Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nat. Geosci., 9, 838842, doi:10.1038/ngeo2820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., R. Lukas, G. N. Kiladis, K. M. Weickmann, A. J. Matthews, and M. Wheeler, 2001: A conceptual framework for time and space scale interactions in the climate system. Climate Dyn., 17, 753775, doi:10.1007/s003820000143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meleshko, V., O. M. Johannessen, A. V. Baidin, T. V. Pavlova, and V. A. Govorkova, 2016: Arctic amplification: Does it impact the polar jet stream? Tellus, 68A, 32330, doi:10.3402/tellusa.v68.32330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, doi:10.1038/ngeo2277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, and J. Ukita, 2015: A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn. J. Geophys. Res. Atmos., 120, 32093227, doi:10.1002/2014JD022848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogi, M., K. Yamazaki, and J. Wallace, 2010: Influence of winter and summer surface wind anomalies on summer Arctic sea ice extent. Geophys. Res. Lett., 37, L07701, doi:10.1029/2009GL042356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J., J. Francis, E. Hanna, and M. Wang, 2012: The recent shift in early summer Arctic atmospheric circulation. Geophys. Res. Lett., 39, L19804, doi:10.1029/2012GL053268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J., J. Francis, R. Hall, E. Hanna, S. Kim, and T. Vihma, 2015: The melting Arctic and midlatitude weather patterns: Are they connected? J. Climate, 28, 79177932, doi:10.1175/JCLI-D-14-00822.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, T.-W., J.-H. Jeong, C.-H. Ho, and S.-J. Kim, 2008: Characteristics of atmospheric circulation associated with cold surge occurrences in east Asia: A case study during 2005/06 winter. Adv. Atmos. Sci., 25, 791804, doi:10.1007/s00376-008-0791-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, T.-W., C.-H. Ho, and S. Yang, 2011: Relationship between the Arctic Oscillation and cold surges over East Asia. J. Climate, 24, 6883, doi:10.1175/2010JCLI3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., M. Hoerling, and R. Dole, 2015: Arctic tropospheric warming: Causes and linkages to lower latitudes. J. Climate, 28, 21542167, doi:10.1175/JCLI-D-14-00095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., and V. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, doi:10.1029/2009JD013568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Max Planck Institute for Meteorology Rep. 349, 127 pp. [Available online at http://www.mpimet.mpg.de/fileadmin/models/echam/mpi_report_349.pdf.]

  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, doi:10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2013a: Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett., 40, 959964, doi:10.1002/grl.50174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2013b: Caution needed when linking weather extremes to amplified planetary waves. Proc. Natl. Acad. Sci. USA, 110, E2327, doi:10.1073/pnas.1304867110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, I. Simmonds, and R. Tomas, 2014: Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43, 333344, doi:10.1007/s00382-013-1830-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, L., L. Wang, W. Chen, and Y. Zhang, 2016: Intraseasonal variation of the strength of the East Asian trough and its climatic impacts in boreal winter. J. Climate, 29, 25572577, doi:10.1175/JCLI-D-14-00834.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spreen, G., R. Kwok, and D. Menemenlis, 2011: Trend in Arctic sea ice drift and role of wind forcing: 1992–2009. Geophys. Res. Lett., 38, L19501, doi:10.1029/2011GL048970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2005a: Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci., 62, 44234440, doi:10.1175/JAS3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2005b: Geographical dependence of upper-level blocking formation associated with intraseasonal amplification of the Siberian high. J. Atmos. Sci., 62, 44414449, doi:10.1175/JAS3628.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., X. Zhang, X. Yang, and J. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett., 8, 014036, doi:10.1088/1748-9326/8/1/014036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Oldenborgh, G., R. Haarsma, H. Vries, and M. Allen, 2015: Cold extremes in North America vs. mild weather in Europe: The winter of 2013–14 in the context of a warming world. Bull. Amer. Meteor. Soc., 96, 707714, doi:10.1175/BAMS-D-14-00036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J., 2014: Intensified warming of the Arctic: Causes and impacts on middle latitudes. Global Planet. Change, 117, 5263, doi:10.1016/j.gloplacha.2014.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2014: The East Asian winter monsoon: Re-amplification in the mid-2000s. Chin. Sci. Bull., 59, 430436, doi:10.1007/s11434-013-0029-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO Regional Climate Centres, 2012: Cold spell in Europe and Asia in late winter 2011/2012. WMO Regional Climate Centres, 20 pp. [Available online at http://reliefweb.int/sites/reliefweb.int/files/resources/dwd_2012_report.pdf.]

  • Wu, B., 2017: Winter atmospheric circulation anomaly associated with recent Arctic winter warm anomalies. J. Climate, doi:10.1175/JCLI-D-17-0175.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Su, and R. Zhang, 2011: Effects of autumn-winter arctic sea ice on winter Siberian high. Chin. Sci. Bull., 56, 32203228, doi:10.1007/s11434-011-4696-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Overland, and R. D’Arrigo, 2012: Anomalous Arctic surface wind patterns and their impacts on September sea ice minima and trend. Tellus, 64, 18590, doi:10.3402/tellusa.v64i0.18590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., D. Handorf, K. Dethloff, A. Rinke, and A. Hu, 2013: Winter weather patterns over northern Eurasia and Arctic sea ice loss. Mon. Wea. Rev., 141, 37863800, doi:10.1175/MWR-D-13-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Su, and R. D’Arrigo, 2015: Patterns of Asian winter climate variability and links to Arctic sea ice. J. Climate, 28, 68416858, doi:10.1175/JCLI-D-14-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., K. Yang, and J. Francis, 2016: Summer Arctic dipole wind pattern affects the winter Siberian high. Int. J. Climatol., 36, 41874201, doi:10.1002/joc.4623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., W. Tian, M. P. Chipperfield, F. Xie, and J. Huang, 2016: Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nat. Climate Change, 6, 10941099, doi:10.1038/nclimate3136.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and W.-C. Wang, 1997: Model-simulated northern winter cyclone and anticyclone activity under a greenhouse warming scenario. J. Climate, 10, 16161634, doi:10.1175/1520-0442(1997)010<1616:MSNWCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 715 212 19
PDF Downloads 580 170 18