Understanding the Mechanisms behind the Northward Extension of the West African Monsoon during the Mid-Holocene

Marco Gaetani LATMOS/IPSL, UPMC Univ. Paris 06 Sorbonne Universités, UVSQ, CNRS, Paris, France

Search for other papers by Marco Gaetani in
Current site
Google Scholar
PubMed
Close
,
Gabriele Messori Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Search for other papers by Gabriele Messori in
Current site
Google Scholar
PubMed
Close
,
Qiong Zhang Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Search for other papers by Qiong Zhang in
Current site
Google Scholar
PubMed
Close
,
Cyrille Flamant LATMOS/IPSL, UPMC Univ. Paris 06 Sorbonne Universités, UVSQ, CNRS, Paris, France

Search for other papers by Cyrille Flamant in
Current site
Google Scholar
PubMed
Close
, and
Francesco S. R. Pausata Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden, and Department of Earth and Atmospheric Sciences, University of Quebec in Montreal, Montreal, Quebec, Canada

Search for other papers by Francesco S. R. Pausata in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Understanding the West African monsoon (WAM) dynamics in the mid-Holocene (MH) is a crucial issue in climate modeling, because numerical models typically fail to reproduce the extensive precipitation suggested by proxy evidence. This discrepancy may be largely due to the assumption of both unrealistic land surface cover and atmospheric aerosol concentration. In this study, the MH environment is simulated in numerical experiments by imposing extensive vegetation over the Sahara and the consequent reduction in airborne dust concentration. A dramatic increase in precipitation is simulated across the whole of West Africa, up to the Mediterranean coast. This precipitation response is in better agreement with proxy data, in comparison with the case in which only changes in orbital forcing are considered. Results show a substantial modification of the monsoonal circulation, characterized by an intensification of large-scale deep convection through the entire Sahara, and a weakening and northward shift (~6.5°) of the African easterly jet. The greening of the Sahara also leads to a substantial reduction in the African easterly wave activity and associated precipitation. The reorganization of the regional atmospheric circulation is driven by the vegetation effect on radiative forcing and associated heat fluxes, with the reduction in dust concentration to enhance this response. The results for the WAM in the MH present important implications for understanding future climate scenarios in the region and in teleconnected areas, in the context of projected wetter conditions in West Africa.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0299.1.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marco Gaetani, marco.gaetani@latmos.ipsl.fr

Abstract

Understanding the West African monsoon (WAM) dynamics in the mid-Holocene (MH) is a crucial issue in climate modeling, because numerical models typically fail to reproduce the extensive precipitation suggested by proxy evidence. This discrepancy may be largely due to the assumption of both unrealistic land surface cover and atmospheric aerosol concentration. In this study, the MH environment is simulated in numerical experiments by imposing extensive vegetation over the Sahara and the consequent reduction in airborne dust concentration. A dramatic increase in precipitation is simulated across the whole of West Africa, up to the Mediterranean coast. This precipitation response is in better agreement with proxy data, in comparison with the case in which only changes in orbital forcing are considered. Results show a substantial modification of the monsoonal circulation, characterized by an intensification of large-scale deep convection through the entire Sahara, and a weakening and northward shift (~6.5°) of the African easterly jet. The greening of the Sahara also leads to a substantial reduction in the African easterly wave activity and associated precipitation. The reorganization of the regional atmospheric circulation is driven by the vegetation effect on radiative forcing and associated heat fluxes, with the reduction in dust concentration to enhance this response. The results for the WAM in the MH present important implications for understanding future climate scenarios in the region and in teleconnected areas, in the context of projected wetter conditions in West Africa.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0299.1.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marco Gaetani, marco.gaetani@latmos.ipsl.fr

Supplementary Materials

    • Supplemental Materials (PDF 1.54 MB)
Save
  • Albani, S., and Coauthors, 2014: Improved dust representation in the Community Atmosphere Model. J. Adv. Model. Earth Syst., 6, 541570, doi:10.1002/2013MS000279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biasutti, M., 2013: Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. Atmos., 118, 16131623, doi:10.1002/jgrd.50206.

  • Biasutti, M., A. H. Sobel, and S. J. Camargo, 2009: The role of the Sahara low in summertime Sahel rainfall variability and change in the CMIP3 models. J. Climate, 22, 57555771, doi:10.1175/2009JCLI2969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., S. P. Harrison, B. Otto-Bliesner, A. Abe-Ouchi, J. Jungclaus, and J. Y. Peterschmitt, 2011: The Paleoclimate Modeling Intercomparison Project contribution to CMIP5. CLIVAR Exchanges, Vol. 16, International CLIVAR Project Office, Southampton, United Kingdom, 15–19.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., 2005: Maintenance of the midtropospheric North African summer circulation: Saharan high and African easterly jet. J. Climate, 18, 29432962, doi:10.1175/JCLI3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiacchio, M., F. S. R. Pausata, G. Messori, A. Hannachi, M. Chin, T. Önskog, A. M. L. Ekman, and L. Barrie, 2017: On the links between meteorological variables, aerosols, and tropical cyclone frequency in individual ocean basins. J. Geophys. Res., 122, 802822, doi:10.1002/2015JD024593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Claussen, M., and V. Gayler, 1997: The greening of the Sahara during the mid-Holocene: Results of an interactive atmosphere-biome model. Global Ecol. Biogeogr. Lett., 6, 369377, doi:10.2307/2997337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • deMenocal, P. B., J. Ortiz, T. Guilderson, J. Adkins, M. Sarnthein, L. Baker, and M. Yarusinsky, 2000: Abrupt onset and termination of the African Humid Period: Rapid climate responses to gradual insolation forcing. Quat. Sci. Rev., 19, 347361, doi:10.1016/S0277-3791(99)00081-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diedhiou, A., S. Janicot, A. Viltard, and P. de Felice, 1998: Evidence of two regimes of easterly waves over West Africa and the tropical Atlantic. Geophys. Res. Lett., 25, 28052808, doi:10.1029/98GL02152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diedhiou, A., S. Janicot, A. Viltard, P. de Felice, and H. Laurent, 1999: Easterly wave regimes and associated convection over West Africa and the tropical Atlantic: Results from the NCEP/NCAR and ECMWF reanalyses. Climate Dyn., 15, 795822, doi:10.1007/s003820050316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donnelly, J. P., and J. D. Woodruff, 2007: Intense hurricane activity over the past 5,000 years controlled by El Niño and the West African monsoon. Nature, 447, 465468, doi:10.1038/nature05834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egerer, S., M. Claussen, C. Reick, and T. Stanelle, 2016: The link between marine sediment records and changes in Holocene Saharan landscape: Simulating the dust cycle. Climate Past, 12, 10091027, doi:10.5194/cp-12-1009-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., J. Dunion, J. A. Foley, A. K. Heidinger, and C. S. Velden, 2006: New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks. Geophys. Res. Lett., 33, L19813, doi:10.1029/2006GL026408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., C. Flamant, M. Gaetani, and F. Guichard, 2016: The past, present and future of African dust. Nature, 531, 493495, doi:10.1038/nature17149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fontaine, B., and N. Philippon, 2000: Seasonal evolution of boundary layer heat content in the West African monsoon from the NCEP/NCAR. Int. J. Climatol., 20, 17771790, doi:10.1002/1097-0088(20001130)20:14<1777::AID-JOC568>3.0.CO;2-S.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaetani, M., C. Flamant, S. Bastin, S. Janicot, C. Lavaysse, F. Hourdin, P. Braconnot, and S. Bony, 2016: West African monsoon dynamics and precipitation: The competition between global SST warming and CO2 increase in CMIP5 idealized simulations. Climate Dyn., 48, 13531373, doi:10.1007/s00382-016-3146-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasse, F., 2000: Hydrological changes in the African tropics since the Last Glacial Maximum. Quat. Sci. Rev., 19, 189211, doi:10.1016/S0277-3791(99)00061-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., 2010: Mechanisms of climate change in the semiarid African Sahel: The local view. J. Climate, 23, 743756, doi:10.1175/2009JCLI3123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ginoux, P., J. M. Prospero, T. E. Gill, N. C. Hsu, and M. Zhao, 2012: Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys., 50, RG3005, doi:10.1029/2012RG000388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, G., R. F. Adler, G. J. Huffman, and S. Curtis, 2004: African easterly waves and their association with precipitation. J. Geophys. Res., 109, D04101, doi:10.1029/2003JD003967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, S. P., and Coauthors, 2014: Climate model benchmarking with glacial and mid-Holocene climates. Climate Dyn., 43, 671688, doi:10.1007/s00382-013-1922-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, S. P., P. J. Bartlein, K. Izumi, G. Li, J. Annan, J. Hargreaves, P. Braconnot, and M. Kageyama, 2015: Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat. Climate Change, 5, 735743, doi:10.1038/nclimate2649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and Coauthors, 2010: EC-Earth: A seamless Earth-system prediction approach in action. Bull. Amer. Meteor. Soc., 91, 13571363, doi:10.1175/2010BAMS2877.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hély, C., and Coauthors, 2014: Holocene changes in African vegetation: Tradeoff between climate and water availability. Climate Past, 10, 681686, doi:10.5194/cp-10-681-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, J. A., 2008: How the Sahara became dry. Science, 320, 752753, doi:10.1126/science.1158105.

  • IFAD, 2013: Rainfed food crops in West and Central Africa. A Savoir Series, Vol. 6, International Fund for Agricultural Development and Agence Française de Développement, 183 pp.

  • Kröpelin, S., and Coauthors, 2008: Climate-driven ecosystem succession in the Sahara: The past 6000 years. Science, 320, 765768, doi:10.1126/science.1154913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavaysse, C., C. Flamant, S. Janicot, D. J. Parker, J. P. Lafore, B. Sultan, and J. Pelon, 2009: Seasonal evolution of the West African heat low: A climatological perspective. Climate Dyn., 33, 313330, doi:10.1007/s00382-009-0553-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levis, S., G. B. Bonan, and C. Bonfils, 2004: Soil feedback drives the mid-Holocene North African monsoon northward in fully coupled CCSM2 simulations with a dynamic vegetation model. Climate Dyn., 23, 791802, doi:10.1007/s00382-004-0477-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lézine, A.-M., C. Hély, C. Grenier, P. Braconnot, and G. Krinner, 2011: Sahara and Sahel vulnerability to climate changes, lessons from Holocene hydrological data. Quat. Sci. Rev., 30, 30013012, doi:10.1016/j.quascirev.2011.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Note du Pole de modelisation 27, Institut Pierre-Simon Laplace, 396 pp.

  • McGee, D., P. B. deMenocal, G. Winckler, J. B. W. Stuut, and L. I. Bradtmiller, 2013: The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr. Earth Planet. Sci. Lett., 371-372, 163176, doi:10.1016/j.epsl.2013.03.054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulitza, S., and Coauthors, 2010: Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature, 466, 226228, doi:10.1038/nature09213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muschitiello, F., Q. Zhang, H. S. Sundqvist, F. J. Davies, and H. Renssen, 2015: Arctic climate response to the termination of the African Humid Period. Quat. Sci. Rev., 125, 9197, doi:10.1016/j.quascirev.2015.08.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2013: The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteor., 2013, 453521, doi:10.1155/2013/453521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., and K. H. Cook, 2007: Dynamics of the West African monsoon under mid-Holocene precessional forcing: Regional climate model simulations. J. Climate, 20, 694716, doi:10.1175/JCLI4013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., and K. H. Cook, 2008: Atmosphere/vegetation feedbacks: A mechanism for abrupt climate change over northern Africa. J. Geophys. Res., 113, D18102, doi:10.1029/2007JD009608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pausata, F. S. R., G. Messori, and Q. Zhang, 2016: Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period. Earth Planet. Sci. Lett., 434, 298307, doi:10.1016/j.epsl.2015.11.049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pausata, F. S. R., K. A. Emanuel, M. Chiacchio, G. T. Diro, Q. Zhang, L. Sushama, J. C. Stager, and J. P. Donnelly, 2017a: Tropical cyclone activity enhanced by Sahara greening and reduced dust emissions during the African Humid Period. Proc. Natl. Acad. Sci. USA, 114, 62216226, doi:10.1073/pnas.1619111114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pausata, F. S. R., and Coauthors, 2017b: Greening of the Sahara suppressed ENSO activity during the mid-Holocene. Nat. Commun., 8, 16020, doi:10.1038/ncomms16020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, C., N. Reicher, and Y. Yair, 2015: Do West African thunderstorms predict the intensity of Atlantic hurricanes? Geophys. Res. Lett., 42, 24572463, doi:10.1002/2014GL062932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rachmayani, R., M. Prange, and M. Schulz, 2015: North African vegetation–precipitation feedback in early and mid-Holocene climate simulations with CCSM3-DGVM. Climate Past, 11, 175185, doi:10.5194/cp-11-175-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., and Coauthors, 2015: Variability and predictability of West African droughts: A review on the role of sea surface temperature anomalies. J. Climate, 28, 40344060, doi:10.1175/JCLI-D-14-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roehrig, R., D. Bouniol, F. Guichard, F. D. Hourdin, and J. L. Redelsperger, 2013: The present and future of the West African monsoon: A process-oriented assessment of CMIP5 simulations along the AMMA transect. J. Climate, 26, 64716505, doi:10.1175/JCLI-D-12-00505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 2013: Simulating SST teleconnections to Africa: What is the state of the art? J. Climate, 26, 53975418, doi:10.1175/JCLI-D-12-00761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2014: Using palaeo-climate comparisons to constrain future projections in CMIP5. Climate Past, 10, 221250, doi:10.5194/cp-10-221-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shanahan, T. M., and Coauthors, 2006: Paleoclimatic variations in West Africa from a record of late Pleistocene and Holocene lake level stands of Lake Bosumtwi, Ghana. Palaeogeogr. Palaeoclimatol. Palaeoecol., 242, 287302, doi:10.1016/j.palaeo.2006.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, C. B., and N. S. Diffenbaugh, 2013: The contribution of African easterly waves to monsoon precipitation in the CMIP3 ensemble. J. Geophys. Res. Atmos., 118, 35903609, doi:10.1002/jgrd.50363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, C. B., and C. J. Poulsen, 2016: The role of fall season tropical plumes in enhancing Saharan rainfall during the African Humid Period. Geophys. Res. Lett., 43, 349358, doi:10.1002/2015GL066318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, H., and J. D. Neelin, 2005: Dynamical mechanisms for African monsoon changes during the mid-Holocene. J. Geophys. Res., 110, D19105, doi:10.1029/2005JD005806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sultan, B., and M. Gaetani, 2016: Agriculture in West Africa in the twenty-first century: Climate change and impacts scenarios, and potential for adaptation. Front. Plant Sci., 7, 1262, doi:10.3389/fpls.2016.01262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., I. Y. Fung, Y. Liu, and J. C. H. Chiang, 2014: Remote vegetation feedbacks and the mid-Holocene Green Sahara. J. Climate, 27, 48574870, doi:10.1175/JCLI-D-13-00690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and B. J. Hoskins, 1994: An idealized study of African easterly waves. I: A linear view. Quart. J. Roy. Meteor. Soc., 120, 953982, doi:10.1002/qj.49712051809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and M. Blackburn, 1999: Maintenance of the African easterly jet. Quart. J. Roy. Meteor. Soc., 125, 763786, doi:10.1002/qj.49712555502.

    • Search Google Scholar
    • Export Citation
  • Tierney, J. E., F. S. R. Pausata, and P. B. deMenocal, 2017: Rainfall regimes of the Green Sahara. Sci. Adv., 3, e1601503, doi:10.1126/sciadv.1601503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valcke, S., 2006: OASIS3 user guide. PRISM Tech. Rep. 3, 64 pp. [Available online at http://www.prism.enes.org/Publications/Reports/oasis3_UserGuide_T3.pdf.]

  • Vancoppenolle, M., T. Fichefet, H. Goosse, S. Bouillon, G. Madec, and M. A. Morales Maqueda, 2009: Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Modell., 27, 3353, doi:10.1016/j.ocemod.2008.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Hurk, B., P. Viterbo, A. Beljaars, and A. K. Betts, 2000: Offline validation of the ERA-40 surface scheme. ECMWF Tech. Memo. 295, 42 pp.

  • van Hengstum, P. J., J. P. Donnelly, P. L. Fall, M. R. Toomey, N. A. Albury, and B. Kakuk, 2016: The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin. Sci. Rep., 6, 21728, doi:10.1038/srep21728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, R. H., and Coauthors, 2016: Glacial to Holocene changes in trans-Atlantic Saharan dust transport and dust-climate feedbacks. Sci. Adv., 2, e1600445, doi:10.1126/sciadv.1600445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M.-L. C., O. Reale, S. D. Schubert, M. J. Suarez, R. D. Koster, and P. J. Pegion, 2009: African easterly jet: Structure and maintenance. J. Climate, 22, 44594480, doi:10.1175/2009JCLI2584.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M.-L. C., O. Reale, S. D. Schubert, M. J. Suarez, and C. D. Thorncroft, 2012: African easterly jet: Barotropic instability, waves, and cyclogenesis. J. Climate, 25, 14891510, doi:10.1175/2011JCLI4241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2327 1024 204
PDF Downloads 821 133 31