Preconditioning of the Weddell Sea Polynya by the Ocean Mesoscale and Dense Water Overflows

Carolina O. Dufour Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey
Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Carolina O. Dufour in
Current site
Google Scholar
PubMed
Close
,
Adele K. Morrison Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey
Research School for Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Adele K. Morrison in
Current site
Google Scholar
PubMed
Close
,
Stephen M. Griffies NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Stephen M. Griffies in
Current site
Google Scholar
PubMed
Close
,
Ivy Frenger Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Search for other papers by Ivy Frenger in
Current site
Google Scholar
PubMed
Close
,
Hannah Zanowski Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey
Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington

Search for other papers by Hannah Zanowski in
Current site
Google Scholar
PubMed
Close
, and
Michael Winton NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Michael Winton in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The Weddell Sea polynya is a large opening in the open-ocean sea ice cover associated with intense deep convection in the ocean. A necessary condition to form and maintain a polynya is the presence of a strong subsurface heat reservoir. This study investigates the processes that control the stratification and hence the buildup of the subsurface heat reservoir in the Weddell Sea. To do so, a climate model run for 200 years under preindustrial forcing with two eddying resolutions in the ocean (0.25° CM2.5 and 0.10° CM2.6) is investigated. Over the course of the simulation, CM2.6 develops two polynyas in the Weddell Sea, while CM2.5 exhibits quasi-continuous deep convection but no polynyas, exemplifying that deep convection is not a sufficient condition for a polynya to occur. CM2.5 features a weaker subsurface heat reservoir than CM2.6 owing to weak stratification associated with episodes of gravitational instability and enhanced vertical mixing of heat, resulting in an erosion of the reservoir. In contrast, in CM2.6, the water column is more stably stratified, allowing the subsurface heat reservoir to build up. The enhanced stratification in CM2.6 arises from its refined horizontal grid spacing and resolution of topography, which allows, in particular, a better representation of the restratifying effect by transient mesoscale eddies and of the overflows of dense waters along the continental slope.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carolina Dufour, carolina.dufour@mcgill.ca

Abstract

The Weddell Sea polynya is a large opening in the open-ocean sea ice cover associated with intense deep convection in the ocean. A necessary condition to form and maintain a polynya is the presence of a strong subsurface heat reservoir. This study investigates the processes that control the stratification and hence the buildup of the subsurface heat reservoir in the Weddell Sea. To do so, a climate model run for 200 years under preindustrial forcing with two eddying resolutions in the ocean (0.25° CM2.5 and 0.10° CM2.6) is investigated. Over the course of the simulation, CM2.6 develops two polynyas in the Weddell Sea, while CM2.5 exhibits quasi-continuous deep convection but no polynyas, exemplifying that deep convection is not a sufficient condition for a polynya to occur. CM2.5 features a weaker subsurface heat reservoir than CM2.6 owing to weak stratification associated with episodes of gravitational instability and enhanced vertical mixing of heat, resulting in an erosion of the reservoir. In contrast, in CM2.6, the water column is more stably stratified, allowing the subsurface heat reservoir to build up. The enhanced stratification in CM2.6 arises from its refined horizontal grid spacing and resolution of topography, which allows, in particular, a better representation of the restratifying effect by transient mesoscale eddies and of the overflows of dense waters along the continental slope.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carolina Dufour, carolina.dufour@mcgill.ca
Save
  • Antonov, J. I., and Coauthors, 2010: Salinity. Vol. 2, World Ocean Atlas 2009, NOAA Atlas NESDIS 69, 184 pp.

  • Baines, P. G., and S. Condie, 1998: Observations and modelling of Antarctic downslope flows: A review. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, S. Jacobs and R. Weiss, Eds., Amer. Geophys. Union, 29–49.

    • Crossref
    • Export Citation
  • Bernardello, R., I. Marinov, J. B. Palter, E. D. Galbraith, and J. L. Sarmiento, 2014: Impact of Weddell Sea deep convection on natural and anthropogenic carbon in a climate model. Geophys. Res. Lett., 41, 72627269, doi:10.1002/2014GL061313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carsey, F. D., 1980: Microwave observation of the Weddell Polynya. Mon. Wea. Rev., 108, 20322044, doi:10.1175/1520-0493(1980)108<2032:MOOTWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., and A. L. Gordon, 1987: Recurring polynyas over the Cosmonaut Sea and the Maud Rise. J. Geophys. Res., 92, 28192833, doi:10.1029/JC092iC03p02819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., J. B. Palter, E. D. Galbraith, R. Bernardello, and I. Marinov, 2014: Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Climate Change, 4, 278282, doi:10.1038/nclimate2132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, doi:10.1175/JCLI-D-11-00316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufour, C. O., 2011: Rôle des tourbillons de méso-échelle océanique dans la variabilité récente des flux air-mer de CO2 dans l’océan Austral. Ph.D. dissertation, Université de Grenoble, 295 pp., doi:https://tel.archives-ouvertes.fr/tel-00679918/.

  • Dufour, C. O., and Coauthors, 2015: Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean. J. Phys. Oceanogr., 45, 30573081, doi:10.1175/JPO-D-14-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fahrbach, E., G. Rohardt, M. Schrder, and V. Strass, 1994: Transport and structure of the Weddell Gyre. Ann. Geophys., 12, 840855, doi:10.1007/s00585-994-0840-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, T. D., and E. C. Carmack, 1976: Frontal zone mixing and Antarctic Bottom Water formation in the southern Weddell Sea. Deep-Sea Res. Oceanogr. Abstr., 23, 301317, doi:10.1016/0011-7471(76)90872-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 6178, doi:10.1016/j.ocemod.2010.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galbraith, E. D., and Coauthors, 2015: Complex functionality with minimal computation: Promise and pitfalls of reduced-tracer ocean biogeochemistry models. J. Adv. Model. Earth Syst., 7, 20122028, doi:10.1002/2015MS000463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, doi:10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goosse, H., and T. Fichefet, 2001: Open-ocean convection and polynya formation in a large-scale ice–ocean model. Tellus, 53A, 94111, doi:10.3402/tellusa.v53i1.12175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1978: Deep Antarctic convection west of Maud Rise. J. Phys. Oceanogr., 8, 600612, doi:10.1175/1520-0485(1978)008<0600:DACWOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1998: Western Weddell Sea thermohaline stratification. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, S. Jacobs and R. Weiss, Eds., Amer. Geophys. Union, 215–240.

    • Crossref
    • Export Citation
  • Gordon, A. L., D. Martinson, and H. Taylor, 1981: The wind-driven circulation in the Weddell-Enderby Basin. Deep-Sea Res., 28A, 151163, doi:10.1016/0198-0149(81)90087-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2012: Elements of the Modular Ocean Model (MOM). NOAA/Geophysical Fluid Dynamics Laboratory Rep., 631 pp. [Available online at http://www.mom-ocean.org/web/docs/project/MOM5_elements.pdf.]

  • Griffies, S. M., R. C. Pacanowski, and R. W. Hallberg, 2000: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Wea. Rev., 128, 538564, doi:10.1175/1520-0493(2000)128<0538:SDMAWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2015: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Climate, 28, 952977, doi:10.1175/JCLI-D-14-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haid, V., R. Timmermann, L. Ebner, and G. Heinemann, 2015: Atmospheric forcing of coastal polynyas in the south-western Weddell Sea. Antarct. Sci., 27, 388402, doi:10.1017/S0954102014000893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modell., 72, 92103, doi:10.1016/j.ocemod.2013.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heuzé, C., K. J. Heywood, D. P. Stevens, and J. K. Ridley, 2013: Southern Ocean Bottom Water characteristics in CMIP5 models. Geophys. Res. Lett., 40, 14091414, doi:10.1002/grl.50287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heuzé, C., J. K. Ridley, D. Calvert, D. P. Stevens, and K. J. Heywood, 2015: Increasing vertical mixing to reduce Southern Ocean deep convection in NEMO3.4. Geosci. Model Dev., 8, 31193130, doi:10.5194/gmd-8-3119-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ilıcak, M., A. J. Adcroft, S. M. Griffies, and R. W. Hallberg, 2012: Spurious dianeutral mixing and the role of momentum closure. Ocean Modell., 45–46, 3758, doi:10.1016/j.ocemod.2011.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanov, V., G. Shapiro, J. Huthnance, D. Aleynik, and P. Golovin, 2004: Cascades of dense water around the World Ocean. Prog. Oceanogr., 60, 4798, doi:10.1016/j.pocean.2003.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., 1991: On the nature and significance of the Antarctic Slope Front. Mar. Chem., 35, 924, doi:10.1016/S0304-4203(09)90005-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., P. Dutrieux, S. S. Jacobs, E. J. Steig, G. H. Gudmundsson, J. Smith, and K. J. Heywood, 2016: Decadal ocean forcing and Antarctic Ice Sheet response: Lessons from the Amundsen Sea. Oceanography, 29, 106117, doi:10.5670/oceanog.2016.103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kjellsson, J., and Coauthors, 2015: Model sensitivity of the Weddell and Ross Seas, Antarctica, to vertical mixing and freshwater forcing. Ocean Modell., 94, 141152, doi:10.1016/j.ocemod.2015.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., J. Marshall, and U. Send, 1996: Representation of convective plumes by vertical adjustment. J. Geophys. Res., 101, 18 17518 182, doi:10.1029/96JC00861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H.-C., A. Rosati, and M. J. Spelman, 2006: Barotropic tidal mixing effects in a coupled climate model: Oceanic conditions in the northern Atlantic. Ocean Modell., 11, 464477, doi:10.1016/j.ocemod.2005.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-M., A. C. Coward, and A. J. G. Nurser, 2002: Spurious diapycnal mixing of the deep waters in an eddy-permitting global ocean model. J. Phys. Oceanogr., 32, 15221535, doi:10.1175/1520-0485(2002)032<1522:SDMOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., R. W. Hallberg, and J. B. Girton, 2006: Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and non-hydrostatic models. Ocean Modell., 11, 6997, doi:10.1016/j.ocemod.2004.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., D. M. Holland, and R. A. Woodgate, 2004: Halo of low ice concentration observed over the Maud Rise seamount. Geophys. Res. Lett., 31, L13302, doi:10.1029/2004GL019831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010: Temperature. Vol. 1, World Ocean Atlas 2005, NOAA Atlas NESDIS 61, 182 pp.

  • Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys., 37, 164, doi:10.1029/98RG02739.

  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, doi:10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, T., W. Park, and M. Latif, 2013: Multi-centennial variability controlled by Southern Ocean convection in the Kiel Climate Model. Climate Dyn., 40, 20052022, doi:10.1007/s00382-012-1586-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, T., W. Park, and M. Latif, 2015: Southern Ocean forcing of the North Atlantic at multi-centennial time scales in the Kiel Climate Model. Deep-Sea Res. II, 114, 3948, doi:10.1016/j.dsr2.2014.01.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinson, D. G., 1991: Open ocean convection in the Southern Ocean. Deep Convection and Deep Water Formation in the Oceans, J. C. Gascard and P. C. Chu, Eds., Elsevier Science Publishers, 37–52.

    • Crossref
    • Export Citation
  • Martinson, D. G., P. D. Killworth, and A. L. Gordon, 1981: A convective model for the Weddell Polynya. J. Phys. Oceanogr., 11, 466488, doi:10.1175/1520-0485(1981)011<0466:ACMFTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1987: Neutral surfaces. J. Phys. Oceanogr., 17, 19501964, doi:10.1175/1520-0485(1987)017<1950:NS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKee, D. C., X. Yuan, A. L. Gordon, B. A. Huber, and Z. Dong, 2011: Climate impact on interannual variability of Weddell Sea Bottom Water. J. Geophys. Res., 116, C05020, doi:10.1029/2010JC006484.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2008: The nature and consequences of oceanic eddies. Ocean Modeling in an Eddying Regime, M. Hecht and H. Hasumi, Eds., Amer. Geophys. Union, 5–15.

    • Crossref
    • Export Citation
  • Meredith, M. P., A. C. N. Garabato, A. L. Gordon, and G. C. Johnson, 2008: Evolution of the Deep and Bottom Waters of the Scotia Sea, Southern Ocean, during 1995–2005. J. Climate, 21, 33273343, doi:10.1175/2007JCLI2238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., K. Alverson, and I. A. Renfrew, 2002: A reconstruction of the air–sea interaction associated with the Weddell Polynya. J. Phys. Oceanogr., 32, 16851698, doi:10.1175/1520-0485(2002)032<1685:AROTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morales Maqueda, M. A., A. J. Willmott, and N. R. T. Biggs, 2004: Polynya dynamics: A review of observations and modeling. Rev. Geophys., 42, RG1004, doi:10.1029/2002RG000116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newsom, E. R., C. M. Bitz, F. O. Bryan, R. Abernathey, and P. R. Gent, 2016: Southern Ocean deep circulation and heat uptake in a high-resolution climate model. J. Climate, 29, 25972619, doi:10.1175/JCLI-D-15-0513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsi, A., G. Johnson, and J. Bullister, 1999: Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr., 43, 55109, doi:10.1016/S0079-6611(99)00004-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seabrooke, J. M., G. L. Hufford, and R. B. Elder, 1971: Formation of Antarctic Bottom Water in the Weddell Sea. J. Geophys. Res., 76, 21642178, doi:10.1029/JC076i009p02164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, doi:10.1016/S1463-5003(03)00011-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snow, K., A. M. Hogg, S. M. Downes, B. M. Sloyan, M. L. Bates, and S. M. Griffies, 2015: Sensitivity of abyssal water masses to overflow parameterisations. Ocean Modell., 89, 84103, doi:10.1016/j.ocemod.2015.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2015: Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic Shelf Break. Geophys. Res. Lett., 42, 432440, doi:10.1002/2014GL062281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stössel, A., D. Notz, F. A. Haumann, H. Haak, J. Jungclaus, and U. Mikolajewicz, 2015: Controlling high-latitude Southern Ocean convection in climate models. Ocean Modell., 86, 5875, doi:10.1016/j.ocemod.2014.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Z., A. L. Stewart, and A. F. Thompson, 2014: An idealized model of Weddell Gyre export variability. J. Phys. Oceanogr., 44, 16711688, doi:10.1175/JPO-D-13-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suresh, A., and H. Huynh, 1997: Accurate monotonicity-preserving schemes with Runge–Kutta time stepping. J. Comput. Phys., 136, 8399, doi:10.1006/jcph.1997.5745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., K. J. Heywood, S. Schmidtko, and A. L. Stewart, 2014: Eddy transport as a key component of the Antarctic overturning circulation. Nat. Geosci., 7, 879884, doi:10.1038/ngeo2289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urakawa, L. S., and H. Hasumi, 2014: Effect of numerical diffusion on the water mass transformation in eddy-resolving models. Ocean Modell., 74, 2235, doi:10.1016/j.ocemod.2013.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wåhlin, A., 2002: Topographic steering of dense currents with application to submarine canyons. Deep-Sea Res. I, 49, 305320, doi:10.1016/S0967-0637(01)00058-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., R. Hallberg, and A. Gnanadesikan, 1998: Simulation of density-driven frictional downslope flow in Z-coordinate ocean models. J. Phys. Oceanogr., 28, 21632174, doi:10.1175/1520-0485(1998)028<2163:SODDFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeager, S., and G. Danabasoglu, 2012: Sensitivity of Atlantic meridional overturning circulation variability to parameterized Nordic sea overflows in CCSM4. J. Climate, 25, 20772103, doi:10.1175/JCLI-D-11-00149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanowski, H., R. Hallberg, and J. L. Sarmiento, 2015: Abyssal ocean warming and salinification after Weddell polynyas in the GFDL CM2g coupled climate model. J. Phys. Oceanogr., 45, 27552772, https://doi.org/10.1175/JPO-D-15-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2232 759 274
PDF Downloads 877 126 14