The Use of Ground-Based GPS Precipitable Water Measurements over China to Assess Radiosonde and ERA-Interim Moisture Trends and Errors from 1999 to 2015

Weixing Zhang Global Navigation Satellite Systems Research Center, Wuhan University, Wuhan, China
School of Geodesy and Geomatics, Wuhan University, Wuhan, China
Scripps Institution of Oceanography, University of California, San Diego, San Diego, California

Search for other papers by Weixing Zhang in
Current site
Google Scholar
PubMed
Close
,
Yidong Lou Global Navigation Satellite Systems Research Center, Wuhan University, Wuhan, China
Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan, China

Search for other papers by Yidong Lou in
Current site
Google Scholar
PubMed
Close
,
Jennifer S. Haase Scripps Institution of Oceanography, University of California, San Diego, San Diego, California

Search for other papers by Jennifer S. Haase in
Current site
Google Scholar
PubMed
Close
,
Rui Zhang National Earthquake Infrastructure Service, Beijing, China

Search for other papers by Rui Zhang in
Current site
Google Scholar
PubMed
Close
,
Gang Zheng Global Navigation Satellite Systems Research Center, Wuhan University, Wuhan, China

Search for other papers by Gang Zheng in
Current site
Google Scholar
PubMed
Close
,
Jinfang Huang Global Navigation Satellite Systems Research Center, Wuhan University, Wuhan, China

Search for other papers by Jinfang Huang in
Current site
Google Scholar
PubMed
Close
,
Chuang Shi School of Electronic and Information Engineering, Beihang University, Beijing, China
Global Navigation Satellite Systems Research Center, Wuhan University, Wuhan, China

Search for other papers by Chuang Shi in
Current site
Google Scholar
PubMed
Close
, and
Jingnan Liu Global Navigation Satellite Systems Research Center, Wuhan University, Wuhan, China

Search for other papers by Jingnan Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global positioning system (GPS) data from over 260 ground-based permanent stations in China covering the period from 1 March 1999 to 30 April 2015 were used to estimate precipitable water (PW) above each site with an accuracy of about 0.75 mm. Four types of radiosondes (referred to as GZZ2, GTS1, GTS1-1, and GTS1-2) were used in China during this period. Instrumentation type changes in radiosonde records were identified by comparing PW calculated from GPS and radiosonde data. Systematic errors in different radiosonde types introduced significant biases to the estimated PW trends at stations where more than one radiosonde type was used. Estimating PW trends from reanalysis products (ERA-Interim), which assimilate the unadjusted radiosonde humidity data, resulted in an artificial downward PW trend at almost all stations in China. The statistically significant GPS PW trends are predominantly positive, consistent in sign with the increase in moisture expected from the Clausius–Clapeyron relation due to a global temperature increase. The standard deviations of the differences between ERA-Interim and GPS PW in the summer were 3 times larger than the observational error of GPS PW, suggesting that potentially significant improvements to the reanalysis could be achieved by assimilating denser GPS PW observations over China. This work, based on an entirely independent GPS PW dataset, confirms previously reported significant differences in radiosonde PW trends when using corrected data. Furthermore, the dense geographical coverage of the all-weather GPS PW observations, especially in remote areas in western China, provides a valuable resource for calibrating regional trends in reanalysis products.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0591.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chuang Shi, shi@whu.edu.cn

Abstract

Global positioning system (GPS) data from over 260 ground-based permanent stations in China covering the period from 1 March 1999 to 30 April 2015 were used to estimate precipitable water (PW) above each site with an accuracy of about 0.75 mm. Four types of radiosondes (referred to as GZZ2, GTS1, GTS1-1, and GTS1-2) were used in China during this period. Instrumentation type changes in radiosonde records were identified by comparing PW calculated from GPS and radiosonde data. Systematic errors in different radiosonde types introduced significant biases to the estimated PW trends at stations where more than one radiosonde type was used. Estimating PW trends from reanalysis products (ERA-Interim), which assimilate the unadjusted radiosonde humidity data, resulted in an artificial downward PW trend at almost all stations in China. The statistically significant GPS PW trends are predominantly positive, consistent in sign with the increase in moisture expected from the Clausius–Clapeyron relation due to a global temperature increase. The standard deviations of the differences between ERA-Interim and GPS PW in the summer were 3 times larger than the observational error of GPS PW, suggesting that potentially significant improvements to the reanalysis could be achieved by assimilating denser GPS PW observations over China. This work, based on an entirely independent GPS PW dataset, confirms previously reported significant differences in radiosonde PW trends when using corrected data. Furthermore, the dense geographical coverage of the all-weather GPS PW observations, especially in remote areas in western China, provides a valuable resource for calibrating regional trends in reanalysis products.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0591.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chuang Shi, shi@whu.edu.cn

Supplementary Materials

    • Supplemental Materials (DOCX 341.29 KB)
Save
  • Bannon, J. K., and L. P. Steel, 1960: Averaged water vapor contents of the air. Geophysical Memo. 102, Met Office M.O. 631b, 38 pp.

  • Bengtsson, L., S. Hagemann, and K. I. Hodges, 2004: Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109, D11111, doi:10.1029/2004JD004536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, 1992: GPS meteorology: Remote sensing of the atmospheric water vapor using the Global Positioning System. J. Geophys. Res., 97, 15 78715 801, doi:10.1029/92JD01517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boehm, J., A. Niell, P. Tregoning, and H. Schuh, 2006: Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett., 33, L07304, doi:10.1029/2005GL025546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boehm, J., R. Heinkelmann, and H. Schuh, 2007: Short note: A global model of pressure and temperature for geodetic applications. J. Geod., 81, 679683, doi:10.1007/s00190-007-0135-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenot, H., and Coauthors, 2014: A GPS network for tropospheric tomography in the framework of the Mediterranean hydrometeorological observatory Cévennes-Vivarais (southeastern France). Atmos. Meas. Tech., 7, 553578, doi:10.5194/amt-7-553-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Dai, A., J. Wang, P. W. Thorne, D. E. Parker, L. Haimberger, and X. L. Wang, 2011: A new approach to homogenize daily radiosonde humidity data. J. Climate, 24, 965991, doi:10.1175/2010JCLI3816.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deeter, M. N., 2007: A new satellite retrieval method for precipitable water vapor over land and ocean. Geophys. Res. Lett., 34, L02815, doi:10.1029/2006GL028019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and S. M. Davis, 2010: Trends in tropospheric humidity from reanalysis systems. J. Geophys. Res., 115, D19127, doi:10.1029/2010JD014192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., 1994: Monsoons over China. Springer, 432 pp.

  • Divakarla, M. G., C. D. Barnet, M. D. Goldberg, L. M. McMillin, E. Maddy, W. Wolf, L. Zhou, and X. Liu, 2006: Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res., 111, D09S15, doi:10.1029/2005JD006116.

    • Search Google Scholar
    • Export Citation
  • Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the Integrated Global Radiosonde Archive. J. Climate, 19, 5368, doi:10.1175/JCLI3594.1.

  • Durre, I., C. N. Williams Jr., X. Ying, and R. S. Vose, 2009: Radiosonde-based trends in precipitable water over the Northern Hemisphere: An update. J. Geophys. Res., 114, D05112, doi:10.1029/2008JD010989.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and T. C. Peterson, 1995: A new method for detecting and adjusting for undocumented discontinuities in climatological time series. Int. J. Climatol., 15, 369377, doi:10.1002/joc.3370150403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elgered, G., J. L. Davis, T. A. Herring, and I. I. Shapiro, 1991: Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay. J. Geophys. Res., 96, 65416555, doi:10.1029/90JB00834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elgered, G., J. Johansson, B. Rönnäng, and J. Davis, 1997: Measuring regional atmospheric water vapor using the Swedish Permanent GPS Network. Geophys. Res. Lett., 24, 26632666, doi:10.1029/97GL02798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, W. P., and D. J. Gaffen, 1991: On the utility of radiosonde humidity archives for climate studies. Bull. Amer. Meteor. Soc., 72, 15071520, doi:10.1175/1520-0477(1991)072<1507:OTUORH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emardson, T. R., G. Elgered, and J. M. Johansson, 1998: Three months of continuous monitoring of atmospheric water vapor with a network of GPS receivers. J. Geophys. Res., 103, 18071820, doi:10.1029/97JD03015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J. Q., and Q. W. Yao, 2003: Nonlinear Time Series: Nonparametric and Parametric Methods. Springer, 553 pp.

  • Gendt, G., G. Dick, C. H. Reigber, M. Tomassini, Y. Liu, and M. Ramatschi, 2003: Demonstration of NRT GPS water vapor monitoring for numerical weather prediction in Germany. J. Meteor. Soc. Japan, 82, 360370.

    • Search Google Scholar
    • Export Citation
  • Gregow, H., and Coauthors, 2015: User awareness concerning feedback data and input observations used in reanalysis systems. Adv. Sci. Res., 12, 6367, doi:10.5194/asr-12-63-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haase, J. S., M. Ge, H. Vedel, and E. Calais, 2003: Accuracy and variability of GPS tropospheric delay measurements of water vapor in the western Mediterranean. J. Appl. Meteor., 42, 15471568, doi:10.1175/1520-0450(2003)042<1547:AAVOGT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagemann, S., L. Bengtsson, and G. Gendt, 2003: On the determination of atmospheric water vapor from GPS measurements. J. Geophys. Res., 108, 4678, doi:10.1029/2002JD003235.

    • Search Google Scholar
    • Export Citation
  • Hajj, G. A., and Coauthors, 2004: CHAMP and SAC-C atmospheric occultation results and intercomparisons. J. Geophys. Res., 109, D06109, doi:10.1029/2003JD003909.

    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., X. Zhou, Y.-H. Kuo, D. Hunt, and J. Wang, 2010: Global evaluation of radiosonde water vapor systematic biases using GPS radio occultation from COSMIC and ECMWF analysis. Remote Sens., 2, 13201330, doi:10.3390/rs2051320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 1996: Climate Change 1995: The Science of Climate Change. Cambridge University Press, 572 pp.

  • Jade, S., and M. S. M. Vijayan, 2008: GPS-based atmospheric precipitable water vapor estimation using meteorological parameters interpolated from NCEP global reanalysis data. J. Geophys. Res., 113, D03106, doi:10.1029/2007JD008758.

    • Search Google Scholar
    • Export Citation
  • Jin, S., J.-U. Park, J.-H. Cho, and P.-H. Park, 2007: Seasonal variability of GPS-derived zenith tropospheric delay (1994–2006) and climate implications. J. Geophys. Res., 112, D09110, doi:10.1029/2006JD007772.

    • Search Google Scholar
    • Export Citation
  • Jin, S., Z. Li, and J. Cho, 2008: Integrated water vapor field and multiscale variations over China from GPS measurements. J. Appl. Meteor. Climatol., 47, 30083015, doi:10.1175/2008JAMC1920.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. Charles Griffin, 202 pp.

  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78, 197208, doi:10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., 1992: East Asian summer monsoon rainfall variability and climate teleconnection. J. Meteor. Soc. Japan, 70, 211242, doi:10.2151/jmsj1965.70.1B_211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., 2010: The performance assessment of Chinese GTS1 radiosonde measurements. TECO-2010-WMO Technical Conf. on Meteorological and Environmental Instruments and Methods of Observation, Helsinki, Finland, WMO. [Available online at http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-104_TECO-2010/_PROGRAMME.HTML.]

  • Liang, H., R. Zhang, and J. Liu, 2012: Systematic errors in the precipitable water vapor measurements over the Tibetan Plateau and its causes (in Chinese). Acta Meteor. Sin., 70, 155164.

    • Search Google Scholar
    • Export Citation
  • Liou, Y. A., A. G. Pavelyev, J. Wickert, T. Schmidt, and A. A. Pavelyev, 2005: Analysis of atmospheric and ionospheric structures using the GPS/MET and CHAMP radio occultation database: A methodological review. GPS Solut., 9, 122143, doi:10.1007/s10291-005-0141-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., Z. Sun, H. Liang, X. Xu, and P. Wu, 2005: Precipitable water vapor on the Tibetan Plateau estimated by GPS, water vapor radiometer, radiosonde, and numerical weather prediction analysis and its impact on the radiation budget. J. Geophys. Res., 110, D17106, doi:10.1029/2004JD005715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., A. Mehran, T. J. Phillips, and A. AghaKouchak, 2014: Seasonal and regional biases in CMIP5 precipitation simulations. Climate Res., 60, 3550, doi:10.3354/cr01221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, doi:10.2307/1907187.

  • Miloshevich, L. M., H. Vömel, A. Paukkunen, A. J. Heymsfield, and S. J. Oltmans, 2001: Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures. J. Atmos. Oceanic Technol., 18, 135156, doi:10.1175/1520-0426(2001)018<0135:CACORH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nilsson, T., and G. Elgered, 2008: Long-term trends in the atmospheric water vapor content estimated from ground-based GPS data. J. Geophys. Res., 113, D19101, doi:10.1029/2008JD010110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ning, T., and Coauthors, 2016: The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations. Atmos. Meas. Tech., 9, 7992, doi:10.5194/amt-9-79-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. E., and D. I. Cox, 1995: Towards a consistent global climatological rawinsonde data-base. Int. J. Climatol., 15, 473496, doi:10.1002/joc.3370150502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2007: Forecast impact studies of zenith total delay data from European near real-time GPS stations in Météo France 4DVAR. J. Geophys. Res., 112, D06114, doi:10.1029/2006JD007430.

    • Search Google Scholar
    • Export Citation
  • Rebischung, P., J. Griffiths, J. Ray, R. Schmid, X. Collilieux, and B. Garayt, 2012: IGS08: The IGS realization of ITRF2008. GPS Solut., 16, 483494, doi:10.1007/s10291-011-0248-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocken, C., T. Van Hove, J. Johnson, F. Solheim, R. Ware, M. Bevis, S. Chiswell, and S. Businger, 1995: GPS/STORM—GPS sensing of atmospheric water vapor for meteorology. J. Atmos. Oceanic Technol., 12, 468478, doi:10.1175/1520-0426(1995)012<0468:GSOAWV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, R. J., and W. P. Elliott, 2001: Radiosonde-based Northern Hemisphere tropospheric water vapor trends. J. Climate, 14, 16021612, doi:10.1175/1520-0442(2001)014<1602:RBNHTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saastamoinen, J., 1972: Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. The Use of Artificial Satellites for Geodesy, Geophys. Monogr., Vol. 15, Amer. Geophys. Union, 247–251, doi:10.1029/GM015p0247.

    • Crossref
    • Export Citation
  • Santer, B. D., and Coauthors, 2006: Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions. Proc. Natl. Acad. Sci. USA, 103, 13 90513 910, doi:10.1073/pnas.0602861103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaer, S., and P. Steigenberger, 2006: Determination and use of GPS differential code bias values. IGS Workshop 2006, International GNSS Service, Darmstadt, Germany. [Available online at kb.igs.org/hc/en-us/articles/202111816-IGS-Workshop-2006-Website.]

  • Schmid, R., P. Steigenberger, G. Gendt, M. Ge, and M. Rothacher, 2007: Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J. Geod., 81, 781798, doi:10.1007/s00190-007-0148-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, doi:10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, C., Q. Zhao, J. Geng, Y. Lou, M. Ge, and J. Liu, 2008: Recent development of PANDA software in GNSS data processing. International Conference on Earth Observation Data Processing and Analysis (ICEODPA), D. Li, J. Gong, and H. Wu, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7285), doi:10.1117/12.816261.

    • Crossref
    • Export Citation
  • Smith, T. L., S. G. Benjamin, B. E. Schwartz, and S. I. Gutman, 2000: Using GPS-IPW in a 4-D data assimilation system. Earth Planets Space, 52, 921926, doi:10.1186/BF03352306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B., R. Wetherald, G. Stenchikov, and A. Robock, 2002: Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. Science, 296, 727730, doi:10.1126/science.296.5568.727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Sun, B., A. Reale, S. Schroeder, D. J. Seidel, and B. Ballish, 2013: Toward improved corrections for radiation-induced biases in radiosonde temperature observations. J. Geophys. Res. Atmos., 118, 42314243, doi:10.1002/jgrd.50369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., 1993: Effects of vertical distribution of water vapor and temperature on total column water vapor retrieval error. J. Geophys. Res., 98, 70697079, doi:10.1029/93JC00010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takagi, T., F. Kimura, and S. Kono, 2000: Diurnal variation of GPS precipitable water at Lhasa in premonsoon and monsoon periods. J. Meteor. Soc. Japan, 78, 175180, doi:10.2151/jmsj1965.78.2_175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, doi:10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vedel, H., X.-Y. Huang, J. Haase, M. Ge, and E. Calais, 2004: Impact of GPS zenith tropospheric delay data on precipitation forecasts in Mediterranean France and Spain. Geophys. Res. Lett., 31, L02102, doi:10.1029/2003GL017715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vey, S., R. Dietrich, M. Fritsche, A. Rülke, P. Steigenberger, and M. Rothacher, 2009: On the homogeneity and interpretation of precipitable water time series derived from global GPS observations. J. Geophys. Res., 114, D10101, doi:10.1029/2008JD010415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vey, S., R. Dietrich, A. Rülke, M. Fritsche, P. Steigenberger, and M. Rothacher, 2010: Validation of precipitable water vapor within the NCEP/DOE reanalysis using global GPS observations from one decade. J. Climate, 23, 16751695, doi:10.1175/2009JCLI2787.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vömel, H., and Coauthors, 2007: Radiation dry bias of the Vaisala RS92 humidity sensor. J. Atmos. Oceanic Technol., 24, 953963, doi:10.1175/JTECH2019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and L. Zhang, 2008: Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements. J. Climate, 21, 22182238, doi:10.1175/2007JCLI1944.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., D. J. Carlson, D. B. Parsons, T. F. Hock, D. Lauritsen, H. L. Cole, K. Beierle, and E. Chamberlain, 2003: Performance of operational radiosonde humidity sensors in direct comparison with a chilled mirror dew-point hygrometer and its climate implication. Geophys. Res. Lett., 30, 1860, doi:10.1029/2003GL016985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., L. Zhang, and A. Dai, 2005: Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications. J. Geophys. Res., 110, D21101, doi:10.1029/2005JD006215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., L. Zhang, and A. Dai, 2006: A global, 2-hourly atmospheric precipitable water dataset from IGS ground-based GPS measurements: Scientific applications and future needs. IGS Workshop 2006, Darmstadt, Germany, International GNSS Service. [Available online at kb.igs.org/hc/en-us/articles/202111816-IGS-Workshop-2006-Website.]

  • Wang, J., L. Zhang, A. Dai, T. Van Hove, and J. Van Baelen, 2007: A near-global, 8-year, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. J. Geophys. Res., 112, D11107, doi:10.1029/2006JD007529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2014: Observing stations and WMO catalogue of radiosondes. WMO Publ. 9, Vol. A, 602 pp. [Available online at http://www.wmo.int/pages/prog/www/ois/volume-a/vola-home.htm.]

  • Wu, J., S. Wu, G. Hajj, W. Bertiger, and S. Lichten, 1993: Effect of antenna orientation on GPS carrier phase. Manuscripta Geodaetica, 18, 9198.

    • Search Google Scholar
    • Export Citation
  • Zhai, P., and R. E. Eskridge, 1996: Analysis of inhomogeneities in radiosonde temperature and humidity time series. J. Climate, 9, 884894, doi:10.1175/1520-0442(1996)009<0884:AOIIRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P., and R. E. Eskridge, 1997: Atmospheric water vapor over China. J. Climate, 10, 26432652, doi:10.1175/1520-0442(1997)010<2643:AWVOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., A. Dai, and J. Wang, 2012: Trends in tropospheric humidity from 1970 to 2008 over China from a homogenized radiosonde dataset. J. Climate, 25, 45494567, doi:10.1175/JCLI-D-11-00557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., J. Wang, and A. Dai, 2015: Evaluation of atmospheric precipitable water from reanalysis products using homogenized radiosonde observations over China. J. Geophys. Res. Atmos., 120, 10 70310 727, doi:10.1002/2015JD023906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zumberge, J. F., M. B. Heflin, D. C. Jefferson, M. M. Watkins, and F. H. Webb, 1997: Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res., 102, 50055017, doi:10.1029/96JB03860.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1745 760 230
PDF Downloads 992 186 18